Question
Determine algebraically whether the function is even, odd or neither. f(x)=(-x^3)/(5x^2)-6
Solution
4.6
(292 Votos)
Josi
Mestre · Tutor por 5 anos
Resposta
To determine whether the function \( f(x) = \frac{-x^3}{5x^2 - 6} \) is **even**, **odd**, or **neither**, we use the following definitions:1. A function is **even** if \( f(-x) = f(x) \) for all
.2. A function is **odd** if \( f(-x) = -f(x) \) for all
.3. If neither condition is satisfied, the function is **neither even nor odd**.---### Step 1: Compute \( f(-x) \)Substitute
into the function \( f(x) \):
Simplify the numerator and denominator:- The numerator becomes:
- The denominator becomes:
Thus:
---### Step 2: Compare \( f(-x) \) with \( f(x) \)The original function is:
From Step 1, we found:
Clearly, \( f(-x) \neq f(x) \), so the function is **not even**.Now check if \( f(-x) = -f(x) \):
We see that \( f(-x) = -f(x) \). Therefore, the function is **odd**.---### Final Answer:The function \( f(x) = \frac{-x^3}{5x^2 - 6} \) is **odd**.