Question
8) (1+frac(1)/(2))(3-(5)/(2)) cdot frac(3,5){}=
Solution
4.4
(311 Votos)
Zoraide
Avançado · Tutor por 1 anos
Resposta
Para resolver essa expressão, vamos seguir a ordem das operações matemáticas.Primeiro, vamos simplificar a fração
:\( \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} ={1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{1}{2}}{3-\frac{5}{2}} = \frac{1+\frac{