Question
[ y^prime prime+9 y=e^-2 x ] Uhando o róétodo do arpeaiz indeter minado.
Solution
4
(266 Votos)
Alessandra
Profissional · Tutor por 6 anos
Resposta
Para resolver a equação diferencial
usando o método dos coeficientes indeterminados, seguimos os seguintes passos:1. **Resolver a equação homogênea associada**: A equação homogênea é
. A solução característica é obtida resolvendo
, que resulta em
. Portanto, a solução geral da homogênea é:
2. **Propor uma solução particular para a equação não homogênea**: Dado que o termo não homogêneo é
, propomos uma solução particular da forma:
onde
é uma constante a ser determinada.3. **Substituir \( y_p(x) \) na equação original**: Calculamos as derivadas de \( y_p(x) \):
Substituímos \( y_p(x) \), \( y_p'(x) \) e \( y_p''(x) \) na equação original:
Simplificando, obtemos:
Dividindo ambos os lados por
, temos:
4. **Escrever a solução geral da equação não homogênea**: A solução geral é a soma da solução homogênea e da solução particular:
Portanto, a solução geral da equação diferencial dada é: