Question
Determine whether the function is even, odd or neither. f(x)=5x^7-2x^3 Which term describes the function? A. even B. odd C. neither
Solution
4.1
(323 Votos)
Rosana
Mestre · Tutor por 5 anos
Resposta
To determine whether the function \( f(x) = 5x^7 - 2x^3 \) is even, odd, or neither, we need to check the following properties:1. A function \( f(x) \) is even if \( f(-x) = f(x) \) for all
.2. A function \( f(x) \) is odd if \( f(-x) = -f(x) \) for all
.Let's apply these properties to the given function:First, calculate \( f(-x) \):
Simplify the expression:
Now, compare \( f(-x) \) with \(-f(x)\):
We see that:
Since \( f(-x) = -f(x) \), the function \( f(x) = 5x^7 - 2x^3 \) is an odd function.Therefore, the correct answer is:B. odd