Página inicial
/
Matemática
/
Determine Whether the Function Is Even, Odd or Neither. F(x)=5x^7-2x^3 Which Term Describes the Function? A. Even B. Odd C. Neither

Question

Determine whether the function is even, odd or neither. f(x)=5x^7-2x^3 Which term describes the function? A. even B. odd C. neither

Solution

Verificación de expertos
4.1 (323 Votos)
Rosana Mestre · Tutor por 5 anos

Resposta

To determine whether the function \( f(x) = 5x^7 - 2x^3 \) is even, odd, or neither, we need to check the following properties:1. A function \( f(x) \) is even if \( f(-x) = f(x) \) for all .2. A function \( f(x) \) is odd if \( f(-x) = -f(x) \) for all .Let's apply these properties to the given function:First, calculate \( f(-x) \): Simplify the expression: Now, compare \( f(-x) \) with \(-f(x)\): We see that: Since \( f(-x) = -f(x) \), the function \( f(x) = 5x^7 - 2x^3 \) is an odd function.Therefore, the correct answer is:B. odd