Página inicial
/
Matemática
/
what is the remainder when doing the polynomial division shown below? (-6x^3+5x^2+18x-11)/(3x+2) .

Question

What is the remainder when doing the polynomial division shown below? (-6x^3+5x^2+18x-11)/(3x+2) .

Solution

Verificación de expertos
4 (325 Votos)
Josiel Elite · Tutor por 8 anos

Resposta

To find the remainder of the polynomial division, we can use long division or synthetic division. Here, we'll use long division.1. Divide the leading term of the dividend by the leading term of the divisor: .2. Multiply the entire divisor by this result: \((-2x^2)(3x + 2) = -6x^3 - 4x^2\).3. Subtract this from the original dividend: \((-6x^3 + 5x^2 + 18x - 11) - (-6x^3 - 4x^2) = 9x^2 + 18x - 11\).4. Repeat the process with the new polynomial: - Divide the leading term: . - Multiply the entire divisor: \((3x)(3x + 2) = 9x^2 + 6x\). - Subtract: \((9x^2 + 18x - 11) - (9x^2 + 6x) = 12x - 11\).5. Repeat the process again: - Divide the leading term: . - Multiply the entire divisor: \((4)(3x + 2) = 12x + 8\). - Subtract: \((12x - 11) - (12x + 8) = -19\).The remainder is .