Question
Multiplying Factors (A) Find the product of each pair of factors. [ (x+8)(x-2) ] 11. (x+9)(x-8) [ (x+4)(x-9) ] 12. (x+6)(x-3) [ (x-7)(x+4) ] 13. (x+5)(x-9) [ (x-9)(x+4) ] 14. (x+1)(x-5) [ (x+9)(x+3) ] 15. (x+7)(x+4) [ (x-5)(x-1) ] 16. (x-2)(x-2) 7. (x-3)(x-3) 17. (x-9)(x+2) 18. (x-9)(x+2) 18. (x+6)(x+7) 9. (x-1)(x+6) 19. (x+2)(x+1) 10. (x+7)(x-4) 20. (x-4)(x+4)
Solution
4
(303 Votos)
Pedro
Especialista · Tutor por 3 anos
Resposta
### 1.
### 2.
### 3.
### 4.
### 5.
### 6.
### 7.
### 8.
### 9.
### 10.
### 11.
### 12.
### 13.
### 14.
### 15.
### 16.
### 17.
### 18.
### 19.
### 20.
Explicação
## Step 1: Understand the Problem### We need to find the product of each pair of binomials listed. This involves using the distributive property, often referred to as the FOIL method (First, Outer, Inner, Last) for multiplying two binomials.## Step 2: Multiply Each Pair of Binomials### Expression 1: \((x + 8)(x - 2)\)- First:
- Outer: \(x \cdot (-2) = -2x\)- Inner:
- Last: \(8 \cdot (-2) = -16\)- Combine:
### Expression 2: \((x + 4)(x - 9)\)- First:
- Outer: \(x \cdot (-9) = -9x\)- Inner:
- Last: \(4 \cdot (-9) = -36\)- Combine:
### Expression 3: \((x - 7)(x + 4)\)- First:
- Outer:
- Inner:
- Last:
- Combine:
### Expression 4: \((x - 9)(x + 4)\)- First:
- Outer:
- Inner:
- Last:
- Combine:
### Expression 5: \((x + 9)(x + 3)\)- First:
- Outer:
- Inner:
- Last:
- Combine:
### Expression 6: \((x - 5)(x - 1)\)- First:
- Outer: \(x \cdot (-1) = -x\)- Inner:
- Last: \(-5 \cdot (-1) = 5\)- Combine:
### Expression 7: \((x - 3)(x - 3)\)- First:
- Outer: \(x \cdot (-3) = -3x\)- Inner:
- Last: \(-3 \cdot (-3) = 9\)- Combine:
### Expression 8: \((x - 9)(x + 2)\)- First:
- Outer:
- Inner:
- Last:
- Combine:
### Expression 9: \((x - 1)(x + 6)\)- First:
- Outer:
- Inner:
- Last:
- Combine:
### Expression 10: \((x + 7)(x - 4)\)- First:
- Outer: \(x \cdot (-4) = -4x\)- Inner:
- Last: \(7 \cdot (-4) = -28\)- Combine:
### Expression 11: \((x + 9)(x - 8)\)- First:
- Outer: \(x \cdot (-8) = -8x\)- Inner:
- Last: \(9 \cdot (-8) = -72\)- Combine:
### Expression 12: \((x + 6)(x - 3)\)- First:
- Outer: \(x \cdot (-3) = -3x\)- Inner:
- Last: \(6 \cdot (-3) = -18\)- Combine:
### Expression 13: \((x + 5)(x - 9)\)- First:
- Outer: \(x \cdot (-9) = -9x\)- Inner:
- Last: \(5 \cdot (-9) = -45\)- Combine:
### Expression 14: \((x + 1)(x - 5)\)- First:
- Outer: \(x \cdot (-5) = -5x\)- Inner:
- Last: \(1 \cdot (-5) = -5\)- Combine:
### Expression 15: \((x + 7)(x + 4)\)- First:
- Outer:
- Inner:
- Last:
- Combine:
### Expression 16: \((x - 2)(x - 2)\)- First:
- Outer: \(x \cdot (-2) = -2x\)- Inner:
- Last: \(-2 \cdot (-2) = 4\)- Combine:
### Expression 17: \((x - 9)(x + 2)\)- First:
- Outer:
- Inner:
- Last:
- Combine:
### Expression 18: \((x + 6)(x + 7)\)- First:
- Outer:
- Inner:
- Last:
- Combine:
### Expression 19: \((x + 2)(x + 1)\)- First:
- Outer:
- Inner:
- Last:
- Combine:
### Expression 20: \((x - 4)(x + 4)\)- First:
- Outer:
- Inner:
- Last:
- Combine: