Question
6) Calcule: a) lim _(xarrow -1)sqrt [3]((2x^3-11x-1)/(-3x^3)-5x-1) b) lim _(xarrow 2)(x^3-2x^2+3x-2) c) lim _(xarrow -1)(x^2-3x+5)/(x+3)
Solution
4.6
(275 Votos)
Edilson
Mestre · Tutor por 5 anos
Resposta
Vamos corrigir e resolver cada uma das limitações:a)
Para resolver essa limitação, primeiro substituímos
na expressão dentro da raiz cúbica:
A a raiz cúbica dessa fração:\[\sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{8}{7}} = \sqrt[3]{\frac{