Question
Um móvel realiza um movimento uniforme num determinado referencial. Seus espaços variam com o tempo segundo os dados da tabela. Qual será a função horária do movimento uniforme realizado e a que posição será o móvel depois de 2 minutos? mathbf(t)(mathbf(s)) & mathbf(0) & mathbf(2) & mathbf(4) & mathbf(6) & mathbf(8) & mathbf(1 0) mathbf(d)(mathbf(m)) & 40 & 80 & 120 & 160 & 200 & 240 Múltipla Escolha: A. mathrm(d)=40+20 mathrm(t) é mathrm(d)=1,24 mathrm(~km) . B. mathrm(d)=40+20 mathrm(t) é mathrm(d)=80 mathrm(~m) . C. mathrm(d)=20+40 mathrm(t) é mathrm(d)=2,42 mathrm(~km) . D. mathrm(d)=40+20 mathrm(t) é mathrm(d)=2,44 mathrm(~km) . E. mathrm(d)=20+40 mathrm(t) é mathrm(d)=4,82 mathrm(~km) .
Solution
4.2
(162 Votos)
Rosana
Mestre · Tutor por 5 anos
Resposta
### D.
até
.
Explicação
## Step 1: Determine the Uniform Motion Equation### The table provides data for time
in seconds and distance
in meters. We observe that as time increases by 2 seconds, the distance increases by 40 meters. This indicates a uniform motion with constant velocity. The general equation for uniform motion is
, where
is the initial position and
is the velocity.### From the table, at
,
. Therefore,
.### To find the velocity
, we use two points from the table: when
,
and when
,
. Thus, the change in distance is
meters over 2 seconds, giving a velocity
m/s.### Therefore, the function for the uniform motion is \( d(t) = 40 + 20t \).## Step 2: Calculate the Position After 2 Minutes### Convert 2 minutes into seconds:
seconds.### Substitute
into the equation \( d(t) = 40 + 20t \):
## Step 3: Match the Calculated Position to the Multiple Choice Options### The calculated position after 2 minutes (120 seconds) is 2440 meters or 2.44 kilometers. ### Among the options provided, option D matches this result.