Question
Question 1 (30 Marks) (a) Given vectors P=5i+2j-4k and Q=2i-3j+5k . Evaluate the following (i) (5P+2Q)-(2P-3Q) (ii) Determine the magnitude of (3P+2Q)-(2P-3Q)
Solution
4.1
(263 Votos)
Leia
Profissional · Tutor por 6 anos
Resposta
(i) To evaluate
, we first need to find the expressions for
and
.
= 25i + 10j - 20k + 4i - 6j + 10k
= 29i + 4j - 10k
2P-3Q = 2(5i+2j-4k) - 3(2i-3j+5k)
= 10i + 4j - 8k - 6i + 9j - 15k
= 4i + 13j - 23k
(5P+2Q)-(2P-3Q)
(5P+2Q)-(2P-3Q) = (29i + 4j - 10k) - (4i + 13j - 23k)
= 29i + 4j - 10k - 4i - 13j + 23k
= 25i - 9j + 13k
(3P+2Q)-(2P-3Q)
(3P+2Q)-(2P-3Q)
(3P+2Q)-(2P-3Q) = 3(5i+2j-4k) + 2(2i-3j+5k) - (4i + 13j - 23k)
= 15i + 6j - 12k + 4i - 6j + 10k - 4i - 13j + 23k
= 15 6j - 12k + 4i - 6j + 10k - 4i - 13j + 23k
= 15i + 6j - 12k + 4i - 6j + 10k - 4i - 13j + 23k
= 15i + 6j - 12k + 4i - 6j + 10k - 4i - 13j + 23k
= 15i + 6j - 12k + 4i - 6j + 10k - 4i - 13j + 23k
= 15i + 6j - 12k + 4i - 6j + 10k - 4i - 13j + 23k
= 15i + 6j - 12k + 4i - 6j + 10k - 4i - 13j + 23k
= 15i + 6j - 12k + 4i - 6j + 10k - 4i - 13j +
= 15i + 6j - 12k + 4i - 6j + 10k - 4i - 13j + 23k
= 15i + 6j - 12k + 4i - 6j + 10k - 4i - 13j + 23k
= 15i + 6j - 12k + 4i - 6j + 10k - 4i - 13j + 23k
= 15i + 6j - 12k + 4i - 6j + 10k - 4i - 13j + 23k
= 15i + 6j - 12k + 4i - 6j + 10k - 4i - 13j + 23k
= 15i + 6j - 12k + 4i - 6j + 10k - 4i - 13j + 23k
= 15i + 6j - 12k + 4i - 6j + 10k - 4i - 13j + 23k
= 15i + 6j - 12k + 4i - 6j + 10k - 4i - 13j + 23k
= 15i + 6j - 12k + 4i - 6j + 10k - 4i - 13