Página inicial
/
Matemática
/
questão 04 analise a integral dada abaixo int _(1)^infty x^2-3x+2dx diante da integral acima analise as afirmativas a seguir 1.

Question

Questão 04 Analise a integral dada abaixo int _(1)^infty x^2-3x+2dx Diante da integral acima analise as afirmativas a seguir 1. Trata-se de uma integral de Remann definida num intervalo infinito II. Seus limites de integração indicam um intervalo que cresce no infinito caracterizando-a como imprópria III. Seu resultado converge para 1 Estão corretas apenas as afirmativas

Solution

Verificación de expertos
4.1 (254 Votos)
Rafaela Profissional · Tutor por 6 anos

Resposta

Vamos analisar a integral dada: Primeiro, vamos verificar se as afirmativas são verdadeiras.### Afirmativa I:"Trata-se de uma integral de Riemann definida num intervalo infinito."Isso é verdadeiro. A integral é definida no intervalo \([1, \infty)\), que é um intervalo infinito.### Afirmativa II:"Seus limites de integração indicam um intervalo que cresce no infinito caracterizando-a como imprópria."Isso também é verdadeiro. Uma integral com um dos limites de integração sendo infinito é considerada uma integral imprópria.### Afirmativa III:"Seu resultado converge para 1."Para verificar isso, precisamos calcular a integral. Vamos resolver a integral imprópria: Primeiro, encontramos a antiderivada da função : Agora, aplicamos os limites de integração de 1 a : Calculamos a expressão nos limites: Simplificando o termo constante:\[\frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} + \frac{3}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6} = \frac{1}{3} - \frac{3}{2} + 2 = \frac{1}{3} - \frac{9}{6} + \frac{12}{6