Página inicial
/
Matemática
/
simplify: (3x^5y^-7)^2 (9x^10)/(y^14) (6x^10)/(y^14) (1)/(9x^10)y^(14) 9(x^7)/(y^9)

Question

Simplify:
(3x^5y^-7)^2
(9x^10)/(y^14)
(6x^10)/(y^14)
(1)/(9x^10)y^(14)
9(x^7)/(y^9)

Simplify: (3x^5y^-7)^2 (9x^10)/(y^14) (6x^10)/(y^14) (1)/(9x^10)y^(14) 9(x^7)/(y^9)

Solution

expert verified Verificación de expertos
4.7 (153 Votos)
avatar
Guilherme Especialista · Tutor por 3 anos

Resposta

To simplify the expression \(\left(3 x^{5} y^{-7}\right)^{2}\), we need to apply the power of a product rule, which states that \((a \cdot b)^n = a^n \cdot b^n\).Let's break it down:1. Apply the exponent to each part inside the parentheses: 2. Calculate each component: - - \((x^{5})^2 = x^{10}\) (using the power of a power rule: \((a^m)^n = a^{m \cdot n}\)) - \((y^{-7})^2 = y^{-14}\)3. Combine these results: Therefore, the simplified form of \(\left(3 x^{5} y^{-7}\right)^{2}\) is .