Question
ol Solve the initial value problem (dv)/(dx)=(2)/(x)-(1)/(x^2) v=-1 x=1 y=sqrt (4-x^2) about the xaxis from x=-2 x=2 (3 marks) Find the average value Vofithe is y=2x-x (3 marks) Compute the are length of the curve y=ln(3ecx) (3 marks) Venty the fur calculus for f(x)=x^2+2x-8 (3 marks)
Solution
4.5
(297 Votos)
Islaine
Avançado · Tutor por 1 anos
Resposta
To solve the initial value problem, we need to integrate the given differential equation with the initial condition provided.Given:
Step 1: Integrate the differential equation.
Step 2: Apply the initial condition to find the value of
.
Step 3: Substitute the value of
back into the equation.
Therefore, the solution to the initial value problem is:
To find the average value
of the function
, we need to integrate the function over the given interval and divide by the length of the interval.Given:
Interval:
Step 1: Integrate the function over the given interval.
Step 2: Divide the result by the length of the interval.
Therefore, the average value
of the function
is
.To compute the arc length of the curve
, we need to use the arc length formula.Given 1: Find the derivative of
x
\frac{dy}{dx} = \frac{d}{dx} \ln(3e^{x}) = \frac{1}{e^{x}} \cdot 3e^{x} = 3
S = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx
S = \int_{a}^{b} \sqrt{1 + 3^2} dx
S = \int_{a}^{b} \sqrt{10} dx
S = \sqrt{10} \cdot (b - a)
y = \ln(3e^{x})
\sqrt{10} \cdot (b - a)
f(x) = x^2 + 2x - 8
f(x) = x^2 + 2x - 8
f(x)
f'(x) = \frac{d}{dx} (x^2 + 2x -) = 2x + 2
f(x)
\int f(x) dx = \int (x^2 + 2x - 8) dx
= \frac{x^3}{3} + x^2 - 8x + C
f(x) = x^2 + 2x - 8
f'(x) = 2x + 2
f(x)
\int f(x) dx = \frac{x^3}{3} + x^2 - 8x + C$.