Página inicial
/
Matemática
/
8) (63x+45)/(18x-63) 9) (2m^2+22m+20)/(8m+80) a) (7x-4)/(7x+9); -(9)/(7) a) -(3(3+m))/(3m-4); 4,(4)/(3) b) (2(x-4))/(5x-7); 0,(7)/(5)

Question

8) (63x+45)/(18x-63) 9) (2m^2+22m+20)/(8m+80) A) (7x-4)/(7x+9); -(9)/(7) A) -(3(3+m))/(3m-4); 4,(4)/(3) B) (2(x-4))/(5x-7); 0,(7)/(5) B) (-3m+4)/(3(3+m)); 4,-3 C) (3(x-2))/(7x+5); 9,-(5)/(7) C) (m+1)/(4); -10 D) (7x+5)/(2x-7); (7)/(2) D) (7m-6)/(7m+10); -7,-(10)/(7) 10) (5r^2-38r+21)/(3r^2)-24r+21 11) (3x^2-6x)/(7x^2)-12x-4 A) (5r-3)/(3(r-1)); 7,1 A) (3x-10)/(7x-8); (8)/(7),-3 B) (5)/(5r-8); (8)/(5),-9 B) (3(x-3))/(4) (7) C) (5r+1)/(7r-6); 0,(6)/(7) C) 1; (1)/(2) D) (2(r-2))/(7r-3); 0,(3)/(7) D) (3x)/(7x+2); 2,-(2)/(7)

Solution

Verificación de expertos
4.2 (347 Votos)
Zuila Maria Especialista · Tutor por 3 anos

Resposta

Let's solve each problem step by step:8) To simplify this expression, we can factor out the common factors in the numerator and denominator: Now, we out the common factor of 9: Therefore, the simplified expression is .9) To simplify this expression, we can factor out the common factors in the numerator and denominator: Now, we can cancel out the common factor of 2: Therefore, the simplified expression is .10) {5r^{2}-38r+21}{3r^{2}-24r+21} \frac {(5r-3)(r-7)}{(3r-7)(r-3)} (r-3) \frac {5r-3}{3r-7} \frac {5r-3}{3r-7} \frac {3x^{2}-6x}{7x^{2}-12x-4} \frac {3x(x-2)}{7(x-2)(x/7)} (x-2) \frac {3x}{7(x+2/7)} \frac {3x}{7(x+2/7)} \frac {7x+5}{2x-7};\{ \frac {7}{2}\} \frac {m+1}{4};\{ -10\} \frac {5r-3}{3(r-1)};\{ 7,1\} \frac {3x}{7x+2};\{ 2,-\frac}\}$