Primeira página
/
Matemática
/
15 Um triângulo pode ter os ângulos medindo: A) 70^circ ,70^circ e 70^circ (B) 75^circ ,85^circ e 20^circ C) 75^circ ,85^circ e 25^circ D) 70^circ ,90^circ e 25.

Pergunta

15 Um triângulo pode ter os ângulos medindo:
A) 70^circ ,70^circ  e 70^circ 
(B) 75^circ ,85^circ  e 20^circ 
C) 75^circ ,85^circ  e 25^circ 
D) 70^circ ,90^circ  e 25.

15 Um triângulo pode ter os ângulos medindo: A) 70^circ ,70^circ e 70^circ (B) 75^circ ,85^circ e 20^circ C) 75^circ ,85^circ e 25^circ D) 70^circ ,90^circ e 25.

Solução

expert verifiedVerification of experts
4.2202 Voting
avatar
SolangeProfissional · Tutor por 6 anos

Responder

resposta correta é a opção A) $70^{\circ },70^{\circ }$ e $70^{\circ }$. <br /><br />Um triângulo é uma figura geométrica composta por três lados e três ângulos. A soma dos ângulos internos de um triângulo sempre é igual a $180^{\circ }$. <br /><br />Na opção A, a soma dos ângulos é $70^{\circ } + 70^{\circ } + 70^{\circ } = 210^{\circ }$, o que não é igual a $180^{\circ }$. Portanto, essa opção não é válida.<br /><br />Na opção B, a soma dos ângulos é $75^{\circ } + 85^{\circ } + 20^{\circ } = 180^{\circ }$, o que é igual a $180^{\circ }$. Portanto, essa opção é válida.<br /><br />Na opção C, a soma dos ângulos é $75^{\circ } + 85^{\circ } + 25^{\circ } = 185^{\circ }$, o que não é igual a $180^{\circ }$. Portanto, essa opção não é válida.<br /><br />Na opção D, a soma dos ângulos é $70^{\circ } + 90^{\circ } + 25^{\circ } = 185^{\circ }$, o que não é igual a $180^{\circ }$. Portanto, essa opção não é válida.<br /><br />Portanto, a única opção que satisfaz a condição de que a soma dos ângulos internos de um triângulo seja igual a $180^{\circ }$ é a opção B) $75^{\circ },85^{\circ }$ e $20^{\circ }$.
Clique para avaliar: