Primeira página
/
Matemática
/
(7)/(x+1)-(1)/(2)=(2)/(3(x+1))

Pergunta

(7)/(x+1)-(1)/(2)=(2)/(3(x+1))

(7)/(x+1)-(1)/(2)=(2)/(3(x+1))

Solução

expert verifiedVerification of experts
3.4166 Voting
avatar
RenatoMestre · Tutor por 5 anos

Responder

To solve the equation $\frac{7}{x+1} - \frac{1}{2} = \frac{2}{3(x+1)}$, we need to find a common denominator for the fractions on the left side of the equation.<br /><br />The common denominator for $\frac{7}{x+1}$ and $\frac{1}{2}$ is $2(x+1)$. So, we can rewrite the equation as:<br /><br />$\frac{14}{2(x+1)} - \frac{1}{2} = \frac{2}{3(x+1)}$<br /><br />Now, we can combine the fractions on the left side:<br /><br />$\frac{14 - (x+1)}{2(x+1)} = \frac{2}{3(x+1)}$<br /><br />Simplifying the numerator on the left side:<br /><br />$\frac{13}{2(x+1)} = \frac{2}{3(x+1)}$<br /><br />Since the denominators are the same, we can equate the numerators:<br /><br />$13 = \frac{4}{3}$<br /><br />This equation is not true, which means there is no solution for the given equation.
Clique para avaliar: