Primeira página
/
Matemática
/
Problems 1) Derive eq. (329) from eqs. (3.21),(3.24)

Pergunta

Problems
1) Derive eq. (329) from eqs. (3.21),(3.24)

Problems 1) Derive eq. (329) from eqs. (3.21),(3.24)

Solução

expert verifiedVerification of experts
4.7159 Voting
avatar
BeatrizElite · Tutor por 8 anos

Responder

To derive equation (3.29) from equations (3.21) and (3.24), we can use the following steps:<br /><br />1. Start with equation (3.21):<br /> \[ \text{Equation (3.21):} \quad \frac{d}{dt} \left( \frac{dy}{dx} \right) = \frac{d^2 y}{dx^2} \]<br /><br />2. Take the derivative of both sides of equation (3.21) with respect to \(x\):<br /> \[ \frac{d}{dx} \left( \frac{d}{dt} \left( \frac{dy}{dx} \right) \right) = \frac{d}{dx} \left( \frac{d^2 y}{dx^2} \right) \]<br /><br />3. Simplify the left side using the chain rule:<br /> \[ \frac{d^2}{dt \, dx} \left( \frac{dy}{dx} \right) = \frac{d^2 y}{dx^2} \]<br /><br />4. Substitute \( \frac{dy}{dx} \) with \( v \) (as in equation (3.24)):<br /> \[ \frac{d^2}{dt \, dx} \left( v \right) = \frac{d^2 y}{dx^2} \]<br /><br />5. Use equation (3.24) to express \( \frac{d^2 y}{dx^2} \):<br /> \[ \text{Equation (3.24):} \quad \frac{d^2 y}{dx^2} = \frac{d}{dt} \left( \frac{dv}{dx} \right) \]<br /><br />6. Substitute this into the equation from step 4:<br /> \[ \frac{d^2}{dt \, dx} \left( v \right) = \frac{d}{dt} \left( \frac{dv}{dx} \right) \]<br /><br />7. Recognize that \( \frac{d}{dt} \left( \frac{dv}{dx} \right) \) is the second derivative of \( v \) with respect to \( t \):<br /> \[ \frac{d^2}{dt \, dx} \left( v \right) = \frac{d^2 v}{dt \, dx} \]<br /><br />8. Therefore, we have:<br /> \[ \frac{d^2 v}{dt \, dx} = \frac{d}{dt} \left( \frac{dv}{dx} \right) \]<br /><br />This is equation (3.29).
Clique para avaliar: