Primeira página
/
Física
/
10 minutos. De 20 a 2000 a se movi encidem avaliado. Qual é o valor da frequência angular de vetigaçăo dessa instrumenta? A 5.0 mathrm(mA) / mathrm(s) B 3.0 mathrm(mA) / mathrm(s) C 5.0 mathrm(mA) / mathrm(s) D 3.0 mathrm(mA) / mathrm(s) E 40.0 mathrm(mA) / mathrm(s)

Pergunta

10 minutos. De 20 a 2000 a se movi encidem avaliado. Qual é o valor da frequência angular de vetigaçăo dessa instrumenta?
A 5.0 mathrm(mA) / mathrm(s) 
B 3.0 mathrm(mA) / mathrm(s) 
C 5.0 mathrm(mA) / mathrm(s) 
D 3.0 mathrm(mA) / mathrm(s) 
E 40.0 mathrm(mA) / mathrm(s)

10 minutos. De 20 a 2000 a se movi encidem avaliado. Qual é o valor da frequência angular de vetigaçăo dessa instrumenta? A 5.0 mathrm(mA) / mathrm(s) B 3.0 mathrm(mA) / mathrm(s) C 5.0 mathrm(mA) / mathrm(s) D 3.0 mathrm(mA) / mathrm(s) E 40.0 mathrm(mA) / mathrm(s)

Solução

expert verifiedVerification of experts
4.7212 Voting
avatar
Beatriz MariaMestre · Tutor por 5 anos

Responder

### A \( 5.0 \mathrm{mA} / \mathrm{s} \)

Explicação

## Step 1: Understanding the System<br />### The system described involves a spring and a block, which suggests a simple harmonic oscillator. The frequency of oscillation for such a system is determined by the properties of the spring and the mass of the block.<br /><br />## Step 2: Identifying the Question's Requirement<br />### The question asks for the "frequência angular de vetigaçăo," which translates to the angular frequency of vibration in English. Angular frequency (\(\omega\)) is related to the frequency (\(f\)) by the formula \(\omega = 2\pi f\).<br /><br />## Step 3: Analyzing Given Options<br />### The options provided are in units of \(\mathrm{mA/s}\), which seems unusual for angular frequency, typically measured in radians per second (\(\mathrm{rad/s}\)). This discrepancy suggests that there might be an error in the unit representation or the context of the question.<br /><br />## Step 4: Conclusion Based on Context<br />### Without additional information about the spring constant or the mass of the block, it is impossible to calculate the exact angular frequency. However, given the options, it seems like the question might have been misinterpreted or mistranslated regarding the units.
Clique para avaliar: