Primeira página
/
Matemática
/
b) Opar ordenado (2,-1) é solução do sistema?

Pergunta

b) Opar ordenado (2,-1) é solução do sistema?

b) Opar ordenado (2,-1) é solução do sistema?

Solução

expert verifiedVerification of experts
4.2236 Voting
avatar
StéfanoMestre · Tutor por 5 anos

Responder

Para determinar se o par ordenado $(2,-1)$ é solução do sistema de equações, precisamos substituir os valores de $x$ e $y$ em ambas as equações do sistema e verificar se ambas as equações são satisfeitas.<br /><br />Vamos substituir $x=2$ e $y=-1$ em ambas as equações do sistema:<br /><br />Para a primeira equação:<br />$2x + 3y = 5$<br />Substituindo $x=2$ e $y=-1$, temos:<br />$2( + 3(-1) = 5$<br />$4 - 3 = 5$<br />$1 = 5$<br /><br />Para a segunda equação:<br />$2x - 3y = 1$<br />Substituindo $x=2$ e $y=-1$, temos:<br />$2(2) - 3(-1) = 1$<br />$4 + 3 = 1$<br />$7 = 1$<br /><br />Como ambas as equações não são satisfeitas, podemos concluir que o par ordenado $(2,-1)$ não é solução do sistema de equações.
Clique para avaliar: