Pergunta
(3)/(5)x^(-2)/(5)times (4-x)-x^(3)/(5)
Solução
Verification of experts
4.5237 Voting
WandaMestre · Tutor por 5 anos
Responder
To simplify the given expression, we can use the properties of exponents and distribute the terms.<br /><br />The expression is:<br />$\frac{3}{5}x^{-\frac{2}{5}} \times (4 - x) - x^{\frac{3}{5}}$<br /><br />First, let's simplify the term $\frac{3}{5}x^{-\frac{2}{5}}$:<br />$\frac{3}{5}x^{-\frac{2}{5}} = \frac{3}{5} \times \frac{1}{x^{\frac{2}{5}}} = \frac{3}{5x^{\frac{2}{5}}}$<br /><br />Now, let's distribute this term to $(4 - x)$:<br />$\frac{3}{5x^{\frac{2}{5}}} \times (4 - x) = \frac{3(4 - x)}{5x^{\frac{2}{5}}}$<br /><br />Next, let's simplify the entire expression:<br />$\frac{3(4 - x)}{5x^{\frac{2}{5}}} - x^{\frac{3}{5}}$<br /><br />This is the simplified form of the given expression.
Clique para avaliar: