Pergunta
Solve the simultaneous equation by substitution method [ 3 x-4 y=7 5 x-2 y=7 ]
Solução
Verification of experts
4.4335 Voting
DarlanElite · Tutor por 8 anos
Responder
To solve the system of equations using the substitution method, we can solve one equation for one variable and substitute it into the other equation. Let's solve the first equation for $x$:<br /><br />\[3x - 4y = 7\]<br /><br />\[3x = 4y + 7\]<br /><br />\[x = \frac{4y + 7}{3}\]<br /><br />Now, substitute this expression for $x$ into the second equation:<br /><br />\[5x - 2y = 7\]<br /><br />\[5\left(\frac{4y + 7}{3}\right) - 2y = 7\]<br /><br />Multiply both sides by 3 to eliminate the fraction:<br /><br />\[5(4y + 7) - 6y = 21\]<br /><br />\[20y + 35 - 6y = 21\]<br /><br />Combine like terms:<br /><br />\[14y + 35 = 21\]<br /><br />Subtract 35 from both sides:<br /><br />\[14y = -14\]<br /><br />Divide both sides by 14:<br /><br />\[y = -1\]<br /><br />Now that we have the value of $y$, we can substitute it back into the expression for $x$:<br /><br />\[x = \frac{4(-1) + 7}{3}\]<br /><br />\[x = \frac{-4 + 7}{3}\]<br /><br />\[x = \frac{3}{3}\]<br /><br />\[x = 1\]<br /><br />Therefore, the solution to the system of equations is $x = 1$ and $y = -1$.
Clique para avaliar: