Primeira página
/
Matemática
/
Solve the simultaneous equation by substitution method [ 3 x-4 y=7 5 x-2 y=7 ]

Pergunta

Solve the simultaneous equation by substitution method
[

3 x-4 y=7 
5 x-2 y=7

]

Solve the simultaneous equation by substitution method [ 3 x-4 y=7 5 x-2 y=7 ]

Solução

expert verifiedVerification of experts
4.4335 Voting
avatar
DarlanElite · Tutor por 8 anos

Responder

To solve the system of equations using the substitution method, we can solve one equation for one variable and substitute it into the other equation. Let's solve the first equation for $x$:<br /><br />\[3x - 4y = 7\]<br /><br />\[3x = 4y + 7\]<br /><br />\[x = \frac{4y + 7}{3}\]<br /><br />Now, substitute this expression for $x$ into the second equation:<br /><br />\[5x - 2y = 7\]<br /><br />\[5\left(\frac{4y + 7}{3}\right) - 2y = 7\]<br /><br />Multiply both sides by 3 to eliminate the fraction:<br /><br />\[5(4y + 7) - 6y = 21\]<br /><br />\[20y + 35 - 6y = 21\]<br /><br />Combine like terms:<br /><br />\[14y + 35 = 21\]<br /><br />Subtract 35 from both sides:<br /><br />\[14y = -14\]<br /><br />Divide both sides by 14:<br /><br />\[y = -1\]<br /><br />Now that we have the value of $y$, we can substitute it back into the expression for $x$:<br /><br />\[x = \frac{4(-1) + 7}{3}\]<br /><br />\[x = \frac{-4 + 7}{3}\]<br /><br />\[x = \frac{3}{3}\]<br /><br />\[x = 1\]<br /><br />Therefore, the solution to the system of equations is $x = 1$ and $y = -1$.
Clique para avaliar: