Primeira página
/
Matemática
/
g(x)=x^2-1 f(x)=4x+4 Fin d (gcirc f)(x)

Pergunta

g(x)=x^2-1
f(x)=4x+4
Fin d (gcirc f)(x)

g(x)=x^2-1 f(x)=4x+4 Fin d (gcirc f)(x)

Solução

expert verifiedVerification of experts
4.7145 Voting
avatar
HenriqueProfissional · Tutor por 6 anos

Responder

To find the composition of the functions \( g(x) \) and \( f(x) \), denoted as \( (g \circ f)(x) \), we need to substitute \( f(x) \) into \( g(x) \).<br /><br />Given:<br />\[ g(x) = x^2 - 1 \]<br />\[ f(x) = 4x + 4 \]<br /><br />First, we find \( f(x) \):<br />\[ f(x) = 4x + 4 \]<br /><br />Next, we substitute \( f(x) \) into \( g(x) \):<br />\[ (g \circ f)(x) = g(f(x)) = g(4x + 4) \]<br /><br />Now, we substitute \( 4x + 4 \) into \( g(x) \):<br />\[ g(4x + 4) = (4x + 4)^2 - 1 \]<br /><br />We expand \( (4x + 4)^2 \):<br />\[ (4x + 4)^2 = (4x + 4)(4x + 4) = 16x^2 + 32x + 16 \]<br /><br />So,<br />\[ g(4x + 4) = 16x^2 + 32x + 16 - 1 \]<br />\[ g(4x + 4) = 16x^2 + 32x + 15 \]<br /><br />Therefore, the composition \( (g \circ f)(x) \) is:<br />\[ (g \circ f)(x) = 16x^2 + 32x + 15 \]
Clique para avaliar: