Pergunta
g(x)=x^2-1 f(x)=4x+4 Fin d (gcirc f)(x)
Solução
Verification of experts
4.7145 Voting
HenriqueProfissional · Tutor por 6 anos
Responder
To find the composition of the functions \( g(x) \) and \( f(x) \), denoted as \( (g \circ f)(x) \), we need to substitute \( f(x) \) into \( g(x) \).<br /><br />Given:<br />\[ g(x) = x^2 - 1 \]<br />\[ f(x) = 4x + 4 \]<br /><br />First, we find \( f(x) \):<br />\[ f(x) = 4x + 4 \]<br /><br />Next, we substitute \( f(x) \) into \( g(x) \):<br />\[ (g \circ f)(x) = g(f(x)) = g(4x + 4) \]<br /><br />Now, we substitute \( 4x + 4 \) into \( g(x) \):<br />\[ g(4x + 4) = (4x + 4)^2 - 1 \]<br /><br />We expand \( (4x + 4)^2 \):<br />\[ (4x + 4)^2 = (4x + 4)(4x + 4) = 16x^2 + 32x + 16 \]<br /><br />So,<br />\[ g(4x + 4) = 16x^2 + 32x + 16 - 1 \]<br />\[ g(4x + 4) = 16x^2 + 32x + 15 \]<br /><br />Therefore, the composition \( (g \circ f)(x) \) is:<br />\[ (g \circ f)(x) = 16x^2 + 32x + 15 \]
Clique para avaliar: