Primeira página
/
Matemática
/
Let f(x)=x^2-2 and g(x)=8-x Perform the composition or operation indicated. ((f)/(g))(-7) ((f)/(g))(-7)= square (Simplify your answer. Type an integer or a fraction )

Pergunta

Let f(x)=x^2-2 and g(x)=8-x Perform the composition or operation indicated.
((f)/(g))(-7)
((f)/(g))(-7)= square 
(Simplify your answer. Type an integer or a fraction )

Let f(x)=x^2-2 and g(x)=8-x Perform the composition or operation indicated. ((f)/(g))(-7) ((f)/(g))(-7)= square (Simplify your answer. Type an integer or a fraction )

Solução

expert verifiedVerification of experts
4.2161 Voting
avatar
LuizElite · Tutor por 8 anos

Responder

To find $(\frac {f}{g})(-7)$, we need to evaluate the functions $f(x)$ and $g(x)$ at $x = -7$ and then divide the result of $f(-7)$ by the result of $g(-7)$.<br /><br />First, let's evaluate $f(-7)$:<br />\[ f(x) = x^2 - 2 \]<br />\[ f(-7) = (-7)^2 - 2 = 49 - 2 = 47 \]<br /><br />Next, let's evaluate $g(-7)$:<br />\[ g(x) = 8 - x \]<br />\[ g(-7) = 8 - (-7) = 8 + 7 = 15 \]<br /><br />Now, we can find $(\frac {f}{g})(-7)$:<br />\[ (\frac {f}{g})(-7) = \frac{f(-7)}{g(-7)} = \frac{47}{15} \]<br /><br />So, the simplified answer is:<br />\[ (\frac {f}{g})(-7) = \frac{47}{15} \]
Clique para avaliar: