Pergunta
Rewrite the expression in exponential form. [ sqrt(x^7) ]
Solução
Verification of experts
4.066 Voting
EsterElite · Tutor por 8 anos
Responder
To rewrite the expression \(\sqrt{x^{7}}\) in exponential form, we need to express the square root as a fractional exponent. The square root of a number is the same as raising that number to the power of \(\frac{1}{2}\).<br /><br />Given:<br />\[<br />\sqrt{x^{7}}<br />\]<br /><br />We can rewrite the square root as an exponent:<br />\[<br />(x^{7})^{\frac{1}{2}}<br />\]<br /><br />Using the property of exponents that states \((a^m)^n = a^{mn}\), we can simplify this expression:<br />\[<br />(x^{7})^{\frac{1}{2}} = x^{7 \cdot \frac{1}{2}} = x^{\frac{7}{2}}<br />\]<br /><br />Therefore, the expression \(\sqrt{x^{7}}\) in exponential form is:<br />\[<br />x^{\frac{7}{2}}<br />\]
Clique para avaliar: