Pergunta
The movement of the progress bar may be uneven because questions can be worth more or less (including zero) depending on your answer. Simplify sqrt (3(6)+2^2+(8-5))+6cdot 3^2 The solution is square
Solução
Verification of experts
4.6259 Voting
AidêEspecialista · Tutor por 3 anos
Responder
To simplify the expression \(\sqrt{3(6) + 2^2 + (8 - 5)} + 6 \cdot 3^2\), we will follow these steps:<br /><br />1. Simplify inside the square root.<br />2. Simplify the multiplication outside the square root.<br />3. Combine the results.<br /><br />Let's start with the expression inside the square root:<br />\[ 3(6) + 2^2 + (8 - 5) \]<br /><br />First, calculate each term:<br />\[ 3(6) = 18 \]<br />\[ 2^2 = 4 \]<br />\[ 8 - 5 = 3 \]<br /><br />Now add these results together:<br />\[ 18 + 4 + 3 = 25 \]<br /><br />So, the expression inside the square root simplifies to 25:<br />\[ \sqrt{25} \]<br /><br />Next, simplify the multiplication outside the square root:<br />\[ 6 \cdot 3^2 \]<br /><br />Calculate \(3^2\):<br />\[ 3^2 = 9 \]<br /><br />Then multiply by 6:<br />\[ 6 \cdot 9 = 54 \]<br /><br />Now, combine the two parts:<br />\[ \sqrt{25} + 54 \]<br /><br />Since \(\sqrt{25} = 5\), we have:<br />\[ 5 + 54 = 59 \]<br /><br />Therefore, the simplified expression is:<br />\[ \boxed{59} \]
Clique para avaliar: