Primeira página
/
Matemática
/
The movement of the progress bar may be uneven because questions can be worth more or less (including zero) depending on your answer. Simplify sqrt (3(6)+2^2+(8-5))+6cdot 3^2 The solution is square

Pergunta

The movement of the progress bar may be uneven because questions can be worth more or less (including zero) depending on your
answer.
Simplify sqrt (3(6)+2^2+(8-5))+6cdot 3^2
The solution is square

The movement of the progress bar may be uneven because questions can be worth more or less (including zero) depending on your answer. Simplify sqrt (3(6)+2^2+(8-5))+6cdot 3^2 The solution is square

Solução

expert verifiedVerification of experts
4.6259 Voting
avatar
AidêEspecialista · Tutor por 3 anos

Responder

To simplify the expression \(\sqrt{3(6) + 2^2 + (8 - 5)} + 6 \cdot 3^2\), we will follow these steps:<br /><br />1. Simplify inside the square root.<br />2. Simplify the multiplication outside the square root.<br />3. Combine the results.<br /><br />Let's start with the expression inside the square root:<br />\[ 3(6) + 2^2 + (8 - 5) \]<br /><br />First, calculate each term:<br />\[ 3(6) = 18 \]<br />\[ 2^2 = 4 \]<br />\[ 8 - 5 = 3 \]<br /><br />Now add these results together:<br />\[ 18 + 4 + 3 = 25 \]<br /><br />So, the expression inside the square root simplifies to 25:<br />\[ \sqrt{25} \]<br /><br />Next, simplify the multiplication outside the square root:<br />\[ 6 \cdot 3^2 \]<br /><br />Calculate \(3^2\):<br />\[ 3^2 = 9 \]<br /><br />Then multiply by 6:<br />\[ 6 \cdot 9 = 54 \]<br /><br />Now, combine the two parts:<br />\[ \sqrt{25} + 54 \]<br /><br />Since \(\sqrt{25} = 5\), we have:<br />\[ 5 + 54 = 59 \]<br /><br />Therefore, the simplified expression is:<br />\[ \boxed{59} \]
Clique para avaliar: