Primeira página
/
Matemática
/
(x+2)(x+3) x^wedge 2+5x+6 x^wedge 2+5x+5 x^wedge 2+5x-6 none of the 1 point

Pergunta

(x+2)(x+3)
x^wedge 2+5x+6
x^wedge 2+5x+5
x^wedge 2+5x-6
none of the
1 point

(x+2)(x+3) x^wedge 2+5x+6 x^wedge 2+5x+5 x^wedge 2+5x-6 none of the 1 point

Solução

expert verifiedVerification of experts
4.6325 Voting
avatar
JosiEspecialista · Tutor por 3 anos

Responder

The correct answer is: $x^{\wedge }2+5x+6$<br /><br />Explanation: To find the product of $(x+2)(x+3)$, we can use the distributive property (also known as the FOIL method for binomials). <br /><br />First, we multiply the first terms: $x \cdot x = x^2$.<br /><br />Next, we multiply the outer terms: $x \cdot 3 = 3x$.<br /><br />Then, we multiply the inner terms: $2 \cdot x = 2x$.<br /><br />Finally, we multiply the last terms: $2 \cdot 3 = 6$.<br /><br />Adding all these products together, we get $x^2 + 3x + 2x + 6$, which simplifies to $x^2 + 5x + 6$.
Clique para avaliar: