Pergunta
Find the exact value of the expression. Do not use a calculator. cos(-(17pi )/(4))-csc(-(17pi )/(4)) Select the correct choice below and, if necessary.fill in the answer box to complete your choice. A. cos(-(17pi )/(4))-csc(-(17pi )/(4))= (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression. B. The answer is undefined.
Solução
Verification of experts
4.2360 Voting
Zuila MariaElite · Tutor por 8 anos
Responder
To find the exact value of the expression, we need to simplify the trigonometric functions.<br /><br />The cosine function is an even function, which means that $cos(-x) = cos(x)$. Therefore, we can rewrite the expression as:<br /><br />$cos(-\frac {17\pi }{4})-csc(-\frac {17\pi }{4}) = cos(\frac {17\pi }{4})-csc(-\frac {17\pi }{4})$<br /><br />Next, let's simplify the cosecant function. The cosecant function is the reciprocal of the sine function, so $csc(x) = \frac{1}{sin(x)}$. Also, the sine function is an odd function, which means that $sin(-x) = -sin(x)$. Therefore, we can rewrite the expression as:<br /><br />$cos(\frac {17\pi }{4})-\frac{1}{sin(-\frac {17\pi }{4})}$<br /><br />Now, let's simplify the sine function. The sine function has a period of $2\pi$, which means that $sin(x) = sin(x + 2k\pi)$ for any integer $k$. Therefore, we can rewrite the expression as:<br /><br />$cos(\frac {17\pi }{4})-\frac{1}{sin(\frac {17\pi }{4} + 2k\pi)}$<br /><br />To find the exact value of the expression, we need to find the value of $\frac {17\pi }{4}$ modulo $2\pi$. Since $\frac {17\pi }{4}$ is greater than $4\pi$, we can subtract $4\pi$ until we get a value less than $2\pi$. We get:<br /><br />$\frac {17\pi }{4} - 4\pi = \frac {17\pi }{4} - \frac {16\pi }{4} = \frac {\pi }{4}$<br /><br />Therefore, we can rewrite the expression as:<br /><br />$cos(\frac {\pi }{4})-\frac{1}{sin(\frac {\pi }{4})}$<br /><br />The exact values of the cosine and sine functions for $\frac {\pi }{4}$ are $\frac {\sqrt {2}}{2}$ and $\frac {\sqrt {2}}{2}$, respectively. Therefore, we can substitute these values into the expression:<br /><br />$\frac {\sqrt {2}}{2}-\frac{1}{\frac {\sqrt {2}}{2}}$<br /><br />Simplifying further, we get:<br /><br />$\frac {\sqrt {2}}{2}-\frac {2}{\sqrt {2}}$<br /><br />Rationalizing the denominator, we get:<br /><br />$\frac {\sqrt {2}}{2}-\frac {2\sqrt {2}}{2}$<br /><br />Simplifying further, we get:<br /><br />$\frac {\sqrt {2}}{2}-\sqrt {2}$<br /><br />Therefore, the exact value of the expression is $\frac {\sqrt {2}}{2}-\sqrt {2}$.<br /><br />So, the correct choice is A.
Clique para avaliar: