Pergunta
Multiplying Factors (A) Find the product of each pair of factors. [ (x+8)(x-2) ] 11. (x+9)(x-8) [ (x+4)(x-9) ] 12. (x+6)(x-3) [ (x-7)(x+4) ] 13. (x+5)(x-9) [ (x-9)(x+4) ] 14. (x+1)(x-5) [ (x+9)(x+3) ] 15. (x+7)(x+4) [ (x-5)(x-1) ] 16. (x-2)(x-2) 7. (x-3)(x-3) 17. (x-9)(x+2) 18. (x-9)(x+2) 18. (x+6)(x+7) 9. (x-1)(x+6) 19. (x+2)(x+1) 10. (x+7)(x-4) 20. (x-4)(x+4)
Solução
Verification of experts
4.0303 Voting
PedroEspecialista · Tutor por 3 anos
Responder
### 1. \(x^2 + 6x - 16\)<br />### 2. \(x^2 - 5x - 36\)<br />### 3. \(x^2 - 3x - 28\)<br />### 4. \(x^2 - 5x - 36\)<br />### 5. \(x^2 + 12x + 27\)<br />### 6. \(x^2 - 6x + 5\)<br />### 7. \(x^2 - 6x + 9\)<br />### 8. \(x^2 - 7x - 18\)<br />### 9. \(x^2 + 5x - 6\)<br />### 10. \(x^2 + 3x - 28\)<br />### 11. \(x^2 + x - 72\)<br />### 12. \(x^2 + 3x - 18\)<br />### 13. \(x^2 - 4x - 45\)<br />### 14. \(x^2 - 4x - 5\)<br />### 15. \(x^2 + 11x + 28\)<br />### 16. \(x^2 - 4x + 4\)<br />### 17. \(x^2 - 7x - 18\)<br />### 18. \(x^2 + 13x + 42\)<br />### 19. \(x^2 + 3x + 2\)<br />### 20. \(x^2 - 16\)
Explicação
## Step 1: Understand the Problem<br />### We need to find the product of each pair of binomials listed. This involves using the distributive property, often referred to as the FOIL method (First, Outer, Inner, Last) for multiplying two binomials.<br /><br />## Step 2: Multiply Each Pair of Binomials<br /><br />### Expression 1: \((x + 8)(x - 2)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot (-2) = -2x\)<br />- Inner: \(8 \cdot x = 8x\)<br />- Last: \(8 \cdot (-2) = -16\)<br />- Combine: \(x^2 + 6x - 16\)<br /><br />### Expression 2: \((x + 4)(x - 9)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot (-9) = -9x\)<br />- Inner: \(4 \cdot x = 4x\)<br />- Last: \(4 \cdot (-9) = -36\)<br />- Combine: \(x^2 - 5x - 36\)<br /><br />### Expression 3: \((x - 7)(x + 4)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot 4 = 4x\)<br />- Inner: \(-7 \cdot x = -7x\)<br />- Last: \(-7 \cdot 4 = -28\)<br />- Combine: \(x^2 - 3x - 28\)<br /><br />### Expression 4: \((x - 9)(x + 4)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot 4 = 4x\)<br />- Inner: \(-9 \cdot x = -9x\)<br />- Last: \(-9 \cdot 4 = -36\)<br />- Combine: \(x^2 - 5x - 36\)<br /><br />### Expression 5: \((x + 9)(x + 3)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot 3 = 3x\)<br />- Inner: \(9 \cdot x = 9x\)<br />- Last: \(9 \cdot 3 = 27\)<br />- Combine: \(x^2 + 12x + 27\)<br /><br />### Expression 6: \((x - 5)(x - 1)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot (-1) = -x\)<br />- Inner: \(-5 \cdot x = -5x\)<br />- Last: \(-5 \cdot (-1) = 5\)<br />- Combine: \(x^2 - 6x + 5\)<br /><br />### Expression 7: \((x - 3)(x - 3)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot (-3) = -3x\)<br />- Inner: \(-3 \cdot x = -3x\)<br />- Last: \(-3 \cdot (-3) = 9\)<br />- Combine: \(x^2 - 6x + 9\)<br /><br />### Expression 8: \((x - 9)(x + 2)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot 2 = 2x\)<br />- Inner: \(-9 \cdot x = -9x\)<br />- Last: \(-9 \cdot 2 = -18\)<br />- Combine: \(x^2 - 7x - 18\)<br /><br />### Expression 9: \((x - 1)(x + 6)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot 6 = 6x\)<br />- Inner: \(-1 \cdot x = -x\)<br />- Last: \(-1 \cdot 6 = -6\)<br />- Combine: \(x^2 + 5x - 6\)<br /><br />### Expression 10: \((x + 7)(x - 4)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot (-4) = -4x\)<br />- Inner: \(7 \cdot x = 7x\)<br />- Last: \(7 \cdot (-4) = -28\)<br />- Combine: \(x^2 + 3x - 28\)<br /><br />### Expression 11: \((x + 9)(x - 8)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot (-8) = -8x\)<br />- Inner: \(9 \cdot x = 9x\)<br />- Last: \(9 \cdot (-8) = -72\)<br />- Combine: \(x^2 + x - 72\)<br /><br />### Expression 12: \((x + 6)(x - 3)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot (-3) = -3x\)<br />- Inner: \(6 \cdot x = 6x\)<br />- Last: \(6 \cdot (-3) = -18\)<br />- Combine: \(x^2 + 3x - 18\)<br /><br />### Expression 13: \((x + 5)(x - 9)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot (-9) = -9x\)<br />- Inner: \(5 \cdot x = 5x\)<br />- Last: \(5 \cdot (-9) = -45\)<br />- Combine: \(x^2 - 4x - 45\)<br /><br />### Expression 14: \((x + 1)(x - 5)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot (-5) = -5x\)<br />- Inner: \(1 \cdot x = x\)<br />- Last: \(1 \cdot (-5) = -5\)<br />- Combine: \(x^2 - 4x - 5\)<br /><br />### Expression 15: \((x + 7)(x + 4)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot 4 = 4x\)<br />- Inner: \(7 \cdot x = 7x\)<br />- Last: \(7 \cdot 4 = 28\)<br />- Combine: \(x^2 + 11x + 28\)<br /><br />### Expression 16: \((x - 2)(x - 2)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot (-2) = -2x\)<br />- Inner: \(-2 \cdot x = -2x\)<br />- Last: \(-2 \cdot (-2) = 4\)<br />- Combine: \(x^2 - 4x + 4\)<br /><br />### Expression 17: \((x - 9)(x + 2)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot 2 = 2x\)<br />- Inner: \(-9 \cdot x = -9x\)<br />- Last: \(-9 \cdot 2 = -18\)<br />- Combine: \(x^2 - 7x - 18\)<br /><br />### Expression 18: \((x + 6)(x + 7)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot 7 = 7x\)<br />- Inner: \(6 \cdot x = 6x\)<br />- Last: \(6 \cdot 7 = 42\)<br />- Combine: \(x^2 + 13x + 42\)<br /><br />### Expression 19: \((x + 2)(x + 1)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot 1 = x\)<br />- Inner: \(2 \cdot x = 2x\)<br />- Last: \(2 \cdot 1 = 2\)<br />- Combine: \(x^2 + 3x + 2\)<br /><br />### Expression 20: \((x - 4)(x + 4)\)<br />- First: \(x \cdot x = x^2\)<br />- Outer: \(x \cdot 4 = 4x\)<br />- Inner: \(-4 \cdot x = -4x\)<br />- Last: \(-4 \cdot 4 = -16\)<br />- Combine: \(x^2 - 16\)
Clique para avaliar: