Pergunta
A circle has a radius of 17 in.Find the radian measure of the central angle Theta that intercepts an arc of length 12 in. Do not round any intermediate comp sions, and round your answer to the nearest tenth. computations Theta =prod radians
Solução
Verification of experts
4.3306 Voting
XimenaMestre · Tutor por 5 anos
Responder
To find the radian measure of the central angle \(\Theta\) that intercepts an arc of length 12 inches in a circle with a radius of 17 inches, we use the formula:<br /><br />\[<br />\Theta = \frac{s}{r}<br />\]<br /><br />where \(s\) is the length of the arc and \(r\) is the radius of the circle.<br /><br />Given:<br />- \(s = 12\) inches<br />- \(r = 17\) inches<br /><br />Substitute the given values into the formula:<br /><br />\[<br />\Theta = \frac{12}{17}<br />\]<br /><br />Now, perform the division:<br /><br />\[<br />\Theta = \frac{12}{17} \approx 0.7058823529411764<br />\]<br /><br />Rounding to the nearest tenth:<br /><br />\[<br />\Theta \approx 0.7 \text{ radians}<br />\]<br /><br />Therefore, the radian measure of the central angle \(\Theta\) is approximately \(0.7\) radians.
Clique para avaliar: