Pergunta
5 Multiple Answer 2 points (-2x-8)/(3)+4geqslant 2 What solution makes this statement true? -1 -2 3 1 -3 2
Solução
Verification of experts
4.1285 Voting
ViniciusProfissional · Tutor por 6 anos
Responder
To solve the inequality \(\frac{-2x-8}{3} + 4 \geqslant 2\), we need to isolate \(x\).<br /><br />1. Start by subtracting 4 from both sides of the inequality:<br /><br /> \[<br /> \frac{-2x-8}{3} \geqslant 2 - 4<br /> \]<br /><br /> \[<br /> \frac{-2x-8}{3} \geqslant -2<br /> \]<br /><br />2. Multiply both sides by 3 to eliminate the fraction:<br /><br /> \[<br /> -2x - 8 \geqslant -6<br /> \]<br /><br />3. Add 8 to both sides:<br /><br /> \[<br /> -2x \geqslant 2<br /> \]<br /><br />4. Divide both sides by -2, and remember to reverse the inequality sign because we are dividing by a negative number:<br /><br /> \[<br /> x \leqslant -1<br /> \]<br /><br />The solution to the inequality is \(x \leqslant -1\). Therefore, the values that make this statement true from the given options are:<br /><br />- \(-1\)<br />- \(-2\)<br />- \(-3\)
Clique para avaliar: