Pergunta
Agora é com você! 1. Preencha os retângulos com números de forma a deixar as igualdades verdadeiras. a 27+9=30+ f) 9+9+9=81div b) 70-25+10=5 g) 89-11-8=-20 c) 44div 4= +1+2 h 16-10-6=25- d) +5-5=5+100 i) +20=65+45 e) 25cdot 5-10=30+ +55 j) 87.=98-34
Solução
Verification of experts
4.6307 Voting
RafaelAvançado · Tutor por 1 anos
Responder
Vamos resolver cada uma das igualdades:<br /><br />a) $27+9=30+$<br />Para que a igualdade seja verdadeira, precisamos encontrar um número que, somado a 30, resulte em 36 (que é o resultado de 27 + 9). Portanto, o número que falta é 6.<br />Resposta: 6<br /><br />b) $70-25+10=5$<br />Para que a igualdade seja verdadeira, precisamos encontrar um número que, subtraído de 25 e somado a 10, resulte em 5. Portanto, o número que falta é 30.<br />Resposta: 30<br /><br />c) $44\div 4=\quad +1+2$<br />Para que a igualdade seja verdadeira, precisamos encontrar um número que, dividido por 4, resulte em 11 (que é o resultado de 1 + 2). Portanto, o número que falta é 11.<br />Resposta: 11<br /><br />d) $+5-5=5+100$<br />Para que a igualdade seja verdadeira, precisamos encontrar um número que, somado a 5 e subtraído de 5, resulte em 100. Portanto, o número que falta é 100.<br />Resposta: 100<br /><br />e) $25\cdot 5-10=30+\quad +55$<br />Para que a igualdade seja verdadeira, precisamos encontrar um número que, multiplicado por 5 e subtraído de 10, resulte em 125 (que é o resultado de 30 + 55). Portanto, o número que falta é 25.<br />Resposta: 25<br /><br />f) $9+9+9=81\div $<br />Para que a igualdade seja verdadeira, precisamos encontrar um número que, dividido por 81, resulte em 27 (que é o resultado de 9 + 9 + 9). Portanto, o número que falta é 27.<br />Resposta: 27<br /><br />g) $89-11-8=-20$<br />Para que a igualdade seja verdadeira, precisamos encontrar um número que, subtraído de 11 e 8, resulte em -20. Portanto, o número que falta é 89.<br />Resposta: 89<br /><br />h) $16-10-6=25-$<br />Para que a igualdade seja verdadeira, precisamos encontrar um número que, subtraído de 10 e 6, resulte em 25. Portanto, o número que falta é 25.<br />Resposta: 25<br /><br />i) $+20=65+45$<br />Para que a igualdade seja verdadeira, precisamos encontrar um número que, somado a 65 e 45, resulte em 20. Portanto, o número que falta é -90.<br />Resposta: -90<br /><br />j) $87.=98-34$<br />Para que a igualdade seja verdadeira, precisamos encontrar um número que, subtraído de 34, resulte em 87. Portanto, o número que falta é 87.<br />Resposta: 87
Clique para avaliar: