Pergunta
What are the solutions of the equation x^4-5x^2-14=0 Use factoring to solve. x=pm sqrt (7) and x=pm sqrt (2) x=pm isqrt (7) and x=pm isqrt (2) x=pm isqrt (7) and x=pm sqrt (2) x=pm sqrt (7) and x=pm isqrt (2)
Solução
Verification of experts
4.2215 Voting
PedroMestre · Tutor por 5 anos
Responder
To solve the equation $x^{4}-5x^{2}-14=0$ by factoring, we can first factor the equation as $(x^2 - 7)(x^2 + 2) = 0$. Then, we can set each factor equal to zero and solve for $x$:<br /><br />1. $x^2 - 7 = 0$<br /> $x^2 = 7$<br /> $x = \pm \sqrt{7}$<br /><br />2. $x^2 + 2 = 0$<br /> $x^2 = -2$<br /> $x = \pm i\sqrt{2}$<br /><br />Therefore, the solutions to the equation $x^{4}-5x^{2}-14=0$ are $x=\pm \sqrt{7}$ and $x=\pm i\sqrt{2}$.
Clique para avaliar: