Pergunta
Question Given P(A)=0.15,P(B)=0.26 and P(Acup B)=0.291 find the value of P(Acap B) ,rounding to the nearest thousandth, if necessary. Answer Attempt 2 out of 2 0.124
Solução
Verification of experts
4.5255 Voting
DiegoVeterano · Tutor por 11 anos
Responder
To find the value of $P(A \cap B)$, we can use the formula for the probability of the union of two events:<br /><br />$P(A \cup B) = P(A) + P(B) - P(A \cap B)$<br /><br />Given:<br />$P(A) = 0.15$<br />$P(B) = 0.26$<br />$P(A \cup B) = 0.291$<br /><br />Substituting the given values into the formula, we get:<br /><br />$0.291 = 0.15 + 0.26 - P(A \cap B)$<br /><br />Simplifying the equation, we have:<br /><br />$P(A \cap B) = 0.15 + 0.26 - 0.291$<br /><br />$P(A \cap B) = 0.415 - 0.291$<br /><br />$P(A \cap B) = 0.124$<br /><br />Therefore, the value of $P(A \cap B)$ is 0.124, rounded to the nearest thousandth.
Clique para avaliar: