Primeira página
/
Matemática
/
Graph rectangle MNOP with vertices M(-2,6),N(2,8),O(5,2) and P(1,0) and reflect it across the following lines of reflection: 1) x=0 2) y=3 3) y=x 4) y=-x

Pergunta

Graph rectangle MNOP with vertices M(-2,6),N(2,8),O(5,2)
and P(1,0)
and reflect it across the following lines of reflection:
1) x=0
2) y=3
3) y=x
4) y=-x

Graph rectangle MNOP with vertices M(-2,6),N(2,8),O(5,2) and P(1,0) and reflect it across the following lines of reflection: 1) x=0 2) y=3 3) y=x 4) y=-x

Solução

expert verifiedVerification of experts
3.4154 Voting
avatar
AnaVeterano · Tutor por 9 anos

Responder

To reflect the rectangle MNOP across the given lines of reflection, we need to find the coordinates of the reflected points.<br /><br />1) Reflection across the line $x=0$:<br />The line $x=0$ is the y-axis. To reflect a point across the y-axis, we change the sign of the x-coordinate while keeping the y-coordinate the same.<br />So, the reflected points are:<br />$M'(-2,6) \rightarrow M'(2,6)$<br />$N(2,8) \rightarrow N'(-2,8)$<br />$O(5,2) \rightarrow O'(-5,2)$<br />$P(1,0) \rightarrow P'(-1,0)$<br /><br />2) Reflection across the line $y=3$:<br />The line $y=3$ is a horizontal line. To reflect a point across a horizontal line, we change the y-coordinate to $2y_{line}-y$, where $y_{line}$ is the y-coordinate of the line of reflection.<br />So, the reflected points are:<br />$M(-2,6) \rightarrow M'(-2,6)$<br />$N(2,8) \rightarrow N'(2,2)$<br />$O(5,2) \rightarrow O'(5,4)$<br />$P(1,0) \rightarrow P'(1,6)$<br /><br />3) Reflection across the line $y=x$:<br />The line $y=x$ is a diagonal line. To reflect a point across the line=x$, we swap the x-coordinate and y-coordinate of the point.<br />So, the reflected points are:<br />$M(-2,6) \rightarrow M'(6,-2)$<br />$N(2,8) \rightarrow N'(8,2)$<br />$O(5,2) \rightarrow O'(2,5)$<br />$P(1,0) \rightarrow P'(0,1)$<br /><br />4) Reflection across the line $y=-x$:<br />The line $y=-x$ is also a diagonal line. To reflect a point across the line $y=-x$, we swap the x-coordinate and y-coordinate of the point and change their signs.<br />So, the reflected points are:<br />$M(-2,6) \rightarrow M'(-6,2)$<br />$N(2,8) \rightarrow N'(-2$O(5,2) \rightarrow O'(-2,5)$<br />$P(1,0) \rightarrow P'(0,-1)$<br /><br />Therefore, the reflected rectangle MNOP across the given lines of reflection are:<br />1) $M'(2,6), N'(-2,8), O'(-5,2), P'(-1,0)$<br />2) $M'(-2,6), N'(2,2),5,4), P'(1,6)$<br />3) $M'(6,-2), N'(8,2), O'(2,5), P'(0,1)$<br />4) $M'(-6,2), N'(-8,2), O'(-2,5), P'(0,-1)$
Clique para avaliar: