Pergunta
int (6+(1)/(x^2)+sinx+x^2sqrt (x))dx
Solução
Verification of experts
4.6339 Voting
LeandroMestre · Tutor por 5 anos
Responder
我们可以将积分拆分为几个简单的积分来求解:<br /><br />$\int (6+\frac {1}{x^{2}}+sinx+x^{2}\sqrt {x})dx = \int 6 dx + \int \frac {1}{x^{2}} dx + \int sinx dx + \int x^{2}\sqrt {x} dx$<br /><br />分别计算每个积分:<br /><br />$\int 6 dx = 6x$<br /><br />$\int \frac {1}{x^{2}} dx = -\frac {1}{x}$<br /><br />$\int sinx dx = -cosx$<br /><br />$\int x^{2}\sqrt {x} dx = \frac {4}{5}x^{\frac {5}{2}}$<br /><br />将这些结果加在一起:<br /><br />$\int (6+\frac {1}{x^{2}}+sinx+x^{2}\sqrt {x})dx = 6x - \frac {1}{x} - cosx + \frac {4}{5}x^{\frac {5}{2}} + C$<br /><br />其中,$C$ 是积分常数。
Clique para avaliar: