Pergunta
Which equals the product of (x-3)(2x+1) 2x^2-7x-3 2x^2-5x-3 3x-2 6x^2
Solução
Verification of experts
4.6188 Voting
PatríciaElite · Tutor por 8 anos
Responder
To find the product of \((x-3)(2x+1)\), we need to use the distributive property (also known as the FOIL method for binomials). Let's expand the expression step by step:<br /><br />1. **First terms**: \( x \cdot 2x = 2x^2 \)<br />2. **Outer terms**: \( x \cdot 1 = x \)<br />3. **Inner terms**: \( -3 \cdot 2x = -6x \)<br />4. **Last terms**: \( -3 \cdot 1 = -3 \)<br /><br />Now, combine all these terms:<br />\[ 2x^2 + x - 6x - 3 \]<br /><br />Combine the like terms (\(x\) and \(-6x\)):<br />\[ 2x^2 - 5x - 3 \]<br /><br />So, the product of \((x-3)(2x+1)\) is:<br />\[ 2x^2 - 5x - 3 \]<br /><br />Therefore, the correct answer is:<br />\[ 2x^{2}-5x-3 \]
Clique para avaliar: