Primeira página
/
Matemática
/
Seja f(x)=x^2sqrt [3](x+1),xgeqslant -1 Determine a integral indefinida de f(x) a int f(x)dx=(sqrt [3]((x+1)^10))/(10)+(sqrt [3]((x+1)^7))/(7)+(sqrt [3]((x+1)^4))/(4)+c b. int f(x)dx=(1)/(4)xsqrt [3]((x+1)^4)+c C. int f(x)dx=(3sqrt [3](x^10))/(10)-(6sqrt [3](x^7))/(7)+(3sqrt [3](x^4))/(4)+c d int f(x)dx=(sqrt [3]((x+1)^10))/(10)-(6sqrt [3]((x+1)[5)](})+frac (sqrt [3]{(x+1)^4))/(4)+c e. int f(x)dx=sqrt [3]((x+1)^10)-2sqrt [3]((x+1)^7)+sqrt [3]((x+1)^4)+c

Pergunta

Seja f(x)=x^2sqrt [3](x+1),xgeqslant -1 Determine a integral indefinida de f(x)
a
int f(x)dx=(sqrt [3]((x+1)^10))/(10)+(sqrt [3]((x+1)^7))/(7)+(sqrt [3]((x+1)^4))/(4)+c
b.
int f(x)dx=(1)/(4)xsqrt [3]((x+1)^4)+c
C.
int f(x)dx=(3sqrt [3](x^10))/(10)-(6sqrt [3](x^7))/(7)+(3sqrt [3](x^4))/(4)+c
d
int f(x)dx=(sqrt [3]((x+1)^10))/(10)-(6sqrt [3]((x+1)[5)](})+frac (sqrt [3]{(x+1)^4))/(4)+c
e.
int f(x)dx=sqrt [3]((x+1)^10)-2sqrt [3]((x+1)^7)+sqrt [3]((x+1)^4)+c

Seja f(x)=x^2sqrt [3](x+1),xgeqslant -1 Determine a integral indefinida de f(x) a int f(x)dx=(sqrt [3]((x+1)^10))/(10)+(sqrt [3]((x+1)^7))/(7)+(sqrt [3]((x+1)^4))/(4)+c b. int f(x)dx=(1)/(4)xsqrt [3]((x+1)^4)+c C. int f(x)dx=(3sqrt [3](x^10))/(10)-(6sqrt [3](x^7))/(7)+(3sqrt [3](x^4))/(4)+c d int f(x)dx=(sqrt [3]((x+1)^10))/(10)-(6sqrt [3]((x+1)[5)](})+frac (sqrt [3]{(x+1)^4))/(4)+c e. int f(x)dx=sqrt [3]((x+1)^10)-2sqrt [3]((x+1)^7)+sqrt [3]((x+1)^4)+c

Solução

expert verifiedVerification of experts
4.2256 Voting
avatar
MatheusProfissional · Tutor por 6 anos

Responder

Para determinar a integral indefinida de \( f(x) = x^2 \sqrt[3]{x+1} \) com \( x \geq -1 \), podemos usar a técnica de integração por partes. Vamos fazer a substituição \( u = \sqrt[3]{x+1} \) e \( dv = x^2 dx \). Então, \( du = \frac{1}{3}(x+1)^{-2/3} dx \) e \( v = \frac{1}{3} \int x^2 dx = \frac{1}{3} \cdot \frac{x^3}{3} = \frac{x^3}{9} \).<br /><br />Aplicando a fórmula de integração por partes \( \int u \, dv = uv - \int v \, du \), temos:<br /><br />\[<br />\int x^2 \sqrt[3]{x+1} \, dx = \sqrt[3]{x+1} \cdot \frac{x^3}{9} - \int \frac{x^3}{9} \cdot \frac{1}{3}(x+1)^{-2/3} \, dx<br />\]<br /><br />ificando, temos:<br /><br />\[<br />\int x^2 \sqrt[3]{x+1} \, dx = \frac{x^3 \sqrt[3]{x+1}}{9} - \frac{1}{27} \int x^3 (x+1)^{-2/3} \, dx<br />\]<br /><br />Para resolver a integral restante, podemos usar integração por partes novamente. Vamos fazer a substituição \( u = x \) e \( dv = x^2 (x+1)^{-2/3} dx \). Então, \( du = dx \) e \( v = \int x^2 (x+1)^{-2/3} dx \).<br /><br />Aplicando a fórmula de integração por partes \( \int u \, dv = uv - \int v \, du \), temos:<br /><br />\[<br />\int x^2 (x+1)^{-2/3} \, dx = x \cdot \int x^2 (x+1)^{-2/3} \, dx - \int \left( \int x^2 (x+1)^{-2/3} \, dx \right) \, dx<br />\]<br /><br />Simplificando, temos:<br /><br />\[<br />\int x^2 (x+1)^{-2/3} \, dx = x \cdot \frac{x^3 (x+1)^{-2/3}}{9} - \int \frac{x^3 (x+1)^{-2/3}}{9} \, dx<br />\]<br /><br />Resolvendo a integral restante, temos:<br /><br />\[<br />\int \frac{x^3 (x+1)^{-2/3}}{9} \, dx = \frac{1}{9} \int x^3 (x+1)^{-2/3} \, dx<br />\]<br /><br />Aplicando integração por partes novamente, temos:<br /><br />\[<br />\int x^3 (x+1)^{-2/3} \, dx = x^3 \cdot \frac{(x+1)^{-2/3}}{9} - \int \frac{(x+1)^{-2/3}}{9} \, dx<br />\]<br /><br />Simplificando, temos:<br /><br />\[<br />\int x^3 (x+1)^{-2/3} \, dx = \frac{x^3 (x+1)^{-2/3}}{9} - \frac{1}{9} \int (x+1)^{-2/3} \, dx<br />\]<br /><br />Resolvendo a integral restante, temos:<br /><br />\[<br />\int (x+1)^{-2/3} \, dx = \frac{(x+1)^{-2/3 + 1}}{-2/3 + 1} = -3(x+1)^{1/3}<br />\]<br /><br />Portanto, a integral indefinida de \( f(x) \) é:<br /><br />\[<br />\int f(x) \, dx = \frac{x^3 \sqrt[3]{x+1}}{9} + \frac{1}{27} \left( \frac{x^3 (x+1)^{-2/3}}{9} - 3(x+1)^{1/3} \right) + c<br />\]<br /><br />Simplificando, temos:<br /><br />\[<br />\int f(x) \, dx = \frac{x^3 \sqrt[3]{x+1}}{9} + \frac{x^3 (x+1)^{-
Clique para avaliar: