Pergunta
3 Multiple Choice 3 points Factor out the GCF from the following. 5x^2+20x-15 3(x^2+4x+5) 5(x+3)(x-1) x(5x+20-3) 5(x^2+4x-3)
Solução
Verification of experts
4.3270 Voting
AlejandroVeterano · Tutor por 10 anos
Responder
To factor out the greatest common factor (GCF) from the given expression \( 5x^2 + 20x - 15 \), let's follow these steps:<br /><br />---<br /><br />### Step 1: Identify the GCF<br />The terms in the expression are:<br />\[<br />5x^2, \, 20x, \, -15<br />\]<br />The coefficients are \( 5, 20, \) and \( -15 \). The GCF of these coefficients is **5**. Additionally, all terms involve powers of \( x \), but not all terms have \( x \) as a factor (e.g., \(-15\) does not include \( x \)). Therefore, the GCF is **5**.<br /><br />---<br /><br />### Step 2: Factor out the GCF<br />Divide each term by \( 5 \):<br />\[<br />5x^2 + 20x - 15 = 5(x^2 + 4x - 3)<br />\]<br /><br />---<br /><br />### Step 3: Verify the Factored Form<br />Distribute \( 5 \) back to ensure correctness:<br />\[<br />5(x^2 + 4x - 3) = 5x^2 + 20x - 15<br />\]<br />This matches the original expression.<br /><br />---<br /><br />### Final Answer:<br />The correct factored form is:<br />\[<br />\boxed{5(x^2 + 4x - 3)}<br />\] <br /><br />Thus, the correct choice is:<br />\[<br />\boxed{5\left(x^2 + 4x - 3\right)}<br />\]
Clique para avaliar: