Pergunta
Determine o conjunto verdade das equaçais a) 2^x=64 h) ((9)/(25))^2 x=(3)/(5) b) 7^x=343 c) 8^x=32 i) 5^x=sqrt(5) d) 25^x=625 d) 49^x=sqrt(7) e) 9^x=(1)/(3) k) 2^x+4=16 f) 2^x=(1)/(32) 4) 5^2 x+1=(1)/(625) g) ((2)/(3))^x cdot((8)/(27)) m) 25^(x+9)=1 N) 0,05^(3 x-1)=0,05^0
Solução
Verification of experts
4.6225 Voting
AliceProfissional · Tutor por 6 anos
Responder
Vamos resolver cada uma das equações para determinar o conjunto verdade:<br /><br />a) \( 2^{x} = 64 \)<br /><br />\[ 2^{x} = 2^6 \]<br />\[ x = 6 \]<br /><br />b) \( 7^{x} = 343 \)<br /><br />\[ 7^{x} = 7^3 \]<br />\[ x = 3 \]<br /><br />c) \( 8^{x} = 32 \)<br /><br />\[ 8^{x} = 2^5 \]<br />\[ (2^3)^{x} = 2^5 \]<br />\[ 2^{3x} = 2^5 \]<br />\[ 3x = 5 \]<br />\[ x = \frac{5}{3} \]<br /><br />d) \( 25^{x} = 625 \)<br /><br />\[ 25^{x} = 25^4 \]<br />\[ x = 4 \]<br /><br />e) \( 9^{x} = \frac{1}{3} \)<br /><br />\[ 9^{x} = 3^{-1} \]<br />\[ (3^2)^{x} = 3^{-1} \]<br />\[ 3^{2x} = 3^{-1} \]<br />\[ 2x = -1 \]<br />\[ x = -\frac{1}{2} \]<br /><br />f) \( 2^{x} = \frac{1}{32} \)<br /><br />\[ 2^{x} = 2^{-5} \]<br />\[ x = -5 \]<br /><br />g) \( \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{8}{27}\right) \)<br /><br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\right) \]<br />\[ \left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2^3}{3^3}\
Clique para avaliar: