Primeira página
/
Matemática
/
Usa the even-odd properties of the trigonometric functions to find the exact value of the given expression Do not use a cel cot(-45^circ ) Select the correct choice below and fill in any answer boxes in your choice. a cot(-45^circ )= (Simplify your"inswer including any radicals Use integers or fractions for any numbers in the expression.) B. The answer is undefined.

Pergunta

Usa the even-odd properties of the trigonometric functions to find the exact value of the given expression Do not use a cel
cot(-45^circ )
Select the correct choice below and fill in any answer boxes in your choice.
a cot(-45^circ )=
(Simplify your"inswer including any radicals Use integers or fractions for any numbers in the expression.)
B. The answer is undefined.

Usa the even-odd properties of the trigonometric functions to find the exact value of the given expression Do not use a cel cot(-45^circ ) Select the correct choice below and fill in any answer boxes in your choice. a cot(-45^circ )= (Simplify your"inswer including any radicals Use integers or fractions for any numbers in the expression.) B. The answer is undefined.

Solução

expert verifiedVerification of experts
4.1270 Voting
avatar
YasminEspecialista · Tutor por 3 anos

Responder

The exact value of \(cot(-45^\circ)\) is \(-1\).

Explicação

## Step 1<br />The cotangent function, denoted as \(cot(\theta)\), is the reciprocal of the tangent function, \(tan(\theta)\). This means that \(cot(\theta) = \frac{1}{tan(\theta)}\).<br /><br />## Step 2<br />The tangent function is periodic with a period of \(180^\circ\). This means that \(tan(\theta) = tan(\theta + 180^\circ k)\), where \(k\) is an integer.<br /><br />## Step 3<br />Given the angle \(-45^\circ\), we can add \(180^\circ\) to it to get an equivalent angle in the first quadrant, which is \(135^\circ\).<br /><br />## Step 4<br />The tangent of \(135^\circ\) is \(-1\), because \(tan(135^\circ) = tan(180^\circ - 45^\circ) = -tan(45^\circ) = -1\).<br /><br />## Step 5<br />Substituting the value of \(tan(135^\circ)\) into the formula for \(cot(\theta)\), we get \(cot(-45^\circ) = \frac{1}{tan(135^\circ)} = \frac{1}{-1} = -1\).
Clique para avaliar: