Pergunta
3) Num triângulo retângulo, um dos catetos mede 24 cm e a sua projeção sobre a hipotenusa cm. Determine: a) a medida da hipotenusa b) a medida do outro cateto c) a medida da altura relativa à hipotenusa.
Solução
Verification of experts
4.3281 Voting
CarlosProfissional · Tutor por 6 anos
Responder
Para resolver este problema, podemos usar o teorema de Pitágoras e algumas propriedades de projeções e alturas em triângulos retângulos.<br /><br />a) Para determinar a medida da hipotenusa, podemos usar o teorema de Pitágoras, que diz que em um triângulo retângulo, o quadrado da hipotenusa é igual à soma dos quadrados dos catetos. No entanto, precisamos de mais informações para calcular a hipotenusa, como a medida do outro cateto ou a projeção do cateto sobre a hipotenusa.<br /><br />b) Para determinar a medida do outro cateto, podemos usar a projeção do primeiro cateto sobre a hipotenusa. A cateto sobre a hipotenusa é igual à razão entre a medida do cateto e a medida da hipotenusa. Portanto, podemos usar a fórmula:<br /><br />projeção = cateto / hipotenusa<br /><br />Se a projeção for conhecida, podemos rearranjar a fórmula para encontrar a medida do cateto:<br /><br />cateto = projeção * hipotenusa<br /><br />c) Para determinar a medida da altura relativa à hipotenusa, podemos usar a fórmula da área do triângulo retângulo. A área de um triângulo retângulo pode ser calculada pela fórmula:<br /><br />área = (base) / 2<br /><br />Neste caso, a a hipotenusa e a altura é a que queremos determinar. Portanto, podemos usar a fórmula:<br /><br />área = (hipotenusa * altura) / 2<br /><br />Se a área for conhecida, podemos rearranjar a fórmula para encontrar a altura:<br /><br />altura = (2 * área) / hipotenusa<br /><br />No entanto, sem informações adicionais, não é possível determinar a medida da hipotenusa, do outro cateto ou da altura relativa à hipotenusa.
Clique para avaliar: