Primeira página
/
Matemática
/
d. g(x)=-4x^2-x^3-5+2x+3x^4 e h(x)=-3x^4+x^2+3(2x^2+4x^4+5x^3+(2)/(3))

Pergunta

d. g(x)=-4x^2-x^3-5+2x+3x^4
e h(x)=-3x^4+x^2+3(2x^2+4x^4+5x^3+(2)/(3))

d. g(x)=-4x^2-x^3-5+2x+3x^4 e h(x)=-3x^4+x^2+3(2x^2+4x^4+5x^3+(2)/(3))

Solução

expert verifiedVerification of experts
4.6311 Voting
avatar
LuisMestre · Tutor por 5 anos

Responder

d. $g(x)=-4x^{2}-x^{3}-5+2x+3x^{4}$<br /><br />To simplify the expression, we can rearrange the terms in descending order of the exponents:<br /><br />$g(x) = 3x^{4} - x^{3} - 4x^{2} + 2x - 5$<br /><br />e. $h(x)=-3x^{4}+x^{2}+3(2x^{2}+4x^{4}+5x^{3}+\frac {2}{3})$<br /><br />First, let's simplify the expression inside the parentheses:<br /><br />$2x^{2}+4x^{4}+5x^{3}+\frac {2}{3}$<br /><br />Now, we can distribute the 3 outside the parentheses:<br /><br />$3(2x^{2}+4x^{4}+5x^{3}+\frac {2}{3}) = 6x^{2}+12x^{4}+15x^{3}+2$<br /><br />Now, let's combine the like terms:<br /><br />$h(x) = -3x^{4} + x^{2} + 6x^{2} + 12x^{4} + 15x^{3} + 2$<br /><br />$h(x) = 12x^{4} + 15x^{3} + 7x^{2} - 3x^{4}$<br /><br />$h(x) = 9x^{4} + 15x^{3} + 7x^{2}$
Clique para avaliar: