Primeira página
/
Matemática
/
Simplify the expression. Leave your answer In simplest radical form. (sqrt (6))(sqrt (30)) square

Pergunta

Simplify the expression. Leave your answer In simplest radical form.
(sqrt (6))(sqrt (30))
square

Simplify the expression. Leave your answer In simplest radical form. (sqrt (6))(sqrt (30)) square

Solução

expert verifiedVerification of experts
4.2229 Voting
avatar
QuitériaElite · Tutor por 8 anos

Responder

To simplify the expression \((\sqrt{6})(\sqrt{30})\), we can use the property of square roots that states:<br /><br />\[<br />\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}<br />\]<br /><br />Applying this property to our expression, we get:<br /><br />\[<br />(\sqrt{6})(\sqrt{30}) = \sqrt{6 \cdot 30}<br />\]<br /><br />Next, we multiply the numbers inside the square root:<br /><br />\[<br />6 \cdot 30 = 180<br />\]<br /><br />So, we have:<br /><br />\[<br />\sqrt{6 \cdot 30} = \sqrt{180}<br />\]<br /><br />Now, we need to simplify \(\sqrt{180}\). To do this, we factor \(180\) into its prime factors:<br /><br />\[<br />180 = 2^2 \cdot 3^2 \cdot 5<br />\]<br /><br />Using the property of square roots, we can separate the factors:<br /><br />\[<br />\sqrt{180} = \sqrt{2^2 \cdot 3^2 \cdot 5} = \sqrt{2^2} \cdot \sqrt{3^2} \cdot \sqrt{5}<br />\]<br /><br />Since \(\sqrt{2^2} = 2\) and \(\sqrt{3^2} = 3\), we get:<br /><br />\[<br />\sqrt{180} = 2 \cdot 3 \cdot \sqrt{5} = 6\sqrt{5}<br />\]<br /><br />Therefore, the simplified form of the expression \((\sqrt{6})(\sqrt{30})\) is:<br /><br />\[<br />6\sqrt{5}<br />\]
Clique para avaliar: