Primeira página
/
Matemática
/
x_(A) Use Pascal's Triangle to complete the expansion of (r+s)^4 r^4+square r^3s+6r^2s^2+square rs^3+s^4

Pergunta

x_(A) Use Pascal's Triangle to complete the expansion of (r+s)^4
r^4+square r^3s+6r^2s^2+square rs^3+s^4

x_(A) Use Pascal's Triangle to complete the expansion of (r+s)^4 r^4+square r^3s+6r^2s^2+square rs^3+s^4

Solução

expert verifiedVerification of experts
4.2188 Voting
avatar
LucianoElite · Tutor por 8 anos

Responder

To expand $(r+s)^{4}$ using Pascal's Triangle, we can use the binomial theorem. The binomial theorem states that $(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k$, where $\binom{n}{k}$ is the binomial coefficient given by $\frac{n!}{k!(n-k)!}$.<br /><br />For $(r+s)^{4}$, we look at the 4th row of Pascal's Triangle (remembering that we start counting rows from row 0), which is 1, 4, 6, 4, 1. These are the coefficients we will use.<br /><br />The expansion is:<br />$(r+s)^{4} = 1r^{4} + 4r^{3}s + 6r^{2}s^{2} + 4rs^{3} + 1s^{4}$<br /><br />So, the completed expansion is:<br />$r^{4} + 4r^{3}s + 6r^{2}s^{2} + 4rs^{3} + s^{4}$
Clique para avaliar: