Primeira página
/
Matemática
/
(0,866)/(1)=(12sqrt (3))/(a)

Pergunta

(0,866)/(1)=(12sqrt (3))/(a)

(0,866)/(1)=(12sqrt (3))/(a)

Solução

expert verifiedVerification of experts
4.7286 Voting
avatar
DieisonMestre · Tutor por 5 anos

Responder

Para resolver essa equação, primeiro vamos simplificar a fração $\frac{0,866}{1}$ para obter o valor exato. Sabemos que $\tan(30^\circ) = \frac{1}{\sqrt{3}}$, e $\sin(30^\circ) = \frac{1}{2}$, então podemos usar essas informações para encontrar o valor de $\sin(30^\circ)$.<br /><br />$\sin(30^\circ) = \frac{1}{2}$<br /><br />Agora, substituímos esse valor na equação original:<br /><br />$\frac{1}{2} = \frac{12\sqrt{3}}{a}$<br /><br />Para encontrar o valor de $a$, podemos multiplicar ambos os lados da equação por $a$:<br /><br />$a \cdot \frac{1}{2} = 12\sqrt{3}$<br /><br />$a = 24\sqrt{3}$<br /><br />Portanto, a resposta correta é:<br /><br />$a = 24\sqrt{3}$
Clique para avaliar: