Primeira página
/
Matemática
/
You might need (1) Cakulator ) g(1)=-29 g(n)=g(n-1)cdot (-4) Find an explicit formula for g(n) g(n)=square

Pergunta

You might need (1) Cakulator
 ) g(1)=-29 g(n)=g(n-1)cdot (-4) 
Find an explicit formula for g(n)
g(n)=square

You might need (1) Cakulator ) g(1)=-29 g(n)=g(n-1)cdot (-4) Find an explicit formula for g(n) g(n)=square

Solução

expert verifiedVerification of experts
4.7208 Voting
avatar
ÍtaloElite · Tutor por 8 anos

Responder

To find an explicit formula for $g(n)$, we can use the recursive formula given:<br /><br />$g(n) = g(n-1) \cdot (-4)$<br /><br />We can start by finding the first few values of $g(n)$:<br /><br />$g(1) = -29$<br /><br />$g(2) = g(1) \cdot (-4) = -29 \cdot (-4) = 116$<br /><br />$g(3) = g(2) \cdot (-4) = 116 \cdot (-4) = -464$<br /><br />$g(4) = g(3) \cdot (-4) = -464 \cdot (-4) = 1856$<br /><br />From these calculations, we can see that the values of $g(n)$ alternate in sign and have a common ratio of $-4$. Therefore, we can write the explicit formula for $g(n)$ as:<br /><br />$g(n) = -29 \cdot (-4)^{n-1}$<br /><br />This formula allows us to find the value of $g(n)$ for any positive integer $n$.
Clique para avaliar: