Primeira página
/
Matemática
/
Select the correct answer. What is the equation of the asymptote for this function? f(x)=((1)/(2))^x+3 A. x=0 B. y=0 C. x=3 D. y=3

Pergunta

Select the correct answer.
What is the equation of the asymptote for this function?
f(x)=((1)/(2))^x+3
A. x=0
B. y=0
C. x=3
D. y=3

Select the correct answer. What is the equation of the asymptote for this function? f(x)=((1)/(2))^x+3 A. x=0 B. y=0 C. x=3 D. y=3

Solução

expert verifiedVerification of experts
4.4264 Voting
avatar
BrunaProfissional · Tutor por 6 anos

Responder

To determine the equation of the asymptote for the function \( f(x) = \left(\frac{1}{2}\right)^x + 3 \), we need to analyze the behavior of the function as \( x \) approaches positive or negative infinity.<br /><br />The function \( f(x) = \left(\frac{1}{2}\right)^x + 3 \) is an exponential function. As \( x \to \infty \), the term \( \left(\frac{1}{2}\right)^x \) approaches 0 because any number less than 1 raised to a large power approaches 0. Therefore, the function approaches:<br /><br />\[ f(x) \approx 0 + 3 = 3 \]<br /><br />This indicates that the horizontal asymptote of the function is \( y = 3 \).<br /><br />Therefore, the correct answer is:<br /><br />D. \( y = 3 \)
Clique para avaliar: