Primeira página
/
Matemática
/
The function f(x)=x^2-2x-8 represents a parabola. Move a function and numbers into the blanks to complete the sentence. Writing f(x) in the equivalent vertex form __ reveals the vertex of the parabola, which has the coordinates ( (ldots ) f(x)=(x-1)^2-7 f(x)=(x-1)^2-9 -9 -8 -7 -2 -1 1 2 4 7 9

Pergunta

The function f(x)=x^2-2x-8 represents a parabola.
Move a function and numbers into the blanks to complete the sentence.
Writing f(x) in the equivalent vertex form
__ reveals the vertex of the parabola, which has the
coordinates ( (ldots )
f(x)=(x-1)^2-7
f(x)=(x-1)^2-9
-9
-8
-7
-2
-1
1
2
4
7
9

The function f(x)=x^2-2x-8 represents a parabola. Move a function and numbers into the blanks to complete the sentence. Writing f(x) in the equivalent vertex form __ reveals the vertex of the parabola, which has the coordinates ( (ldots ) f(x)=(x-1)^2-7 f(x)=(x-1)^2-9 -9 -8 -7 -2 -1 1 2 4 7 9

Solução

expert verifiedVerification of experts
3.9290 Voting
avatar
BeckyEspecialista · Tutor por 3 anos

Responder

Para escribir la función $f(x) = x^2 - 2x - 8$ en la forma vértice, debemos completar el cuadrado. Primero, aislamos el término cuadrático:<br /><br />$f(x) = (x^2 - 2x) - 8$<br /><br />Luego, agregamos y restamos $(\frac{-2}{2})^2 = 1$ dentro del paréntesis:<br /><br />$f(x) = (x^2 - 2x + 1) - 1 - 8$<br /><br />Simplificamos:<br /><br />$f(x) = (x - 1)^2 - 9$<br /><br />Por lo tanto, la forma vértice de la parábola es $f(x) = (x - 1)^2 - 9$, lo que revela que el vértice tiene las coordenadas $(1, -9)$.<br /><br />La respuesta correcta es:<br /><br />$f(x) = (x - 1)^2 - 9$<br /><br />Las coordenadas del vértice son $(1, -9)$.
Clique para avaliar: