Pergunta
Question 7 (2 points) Use discriminants to determine which of the following functions have at least one real root. Check all that apply. f(x)=-3x^2+x-2 b f(x)=-x^2+4 C f(x)=2x^2-12x+18 d f(x)=x^2-3x+25 e f(x)=10x^2-4x f f(x)=-x^2+10x-14
Solução
Verification of experts
4.6278 Voting
VascoVeterano · Tutor por 12 anos
Responder
To determine which of the given functions have at least one real root, we need to calculate the discriminant for each function. The discriminant is given by the formula:<br /><br />\[ \Delta = b^2 - 4ac \]<br /><br />where \( a \), \( b \), and \( c \) are the coefficients of the quadratic equation \( ax^2 + bx + c \).<br /><br />Let's calculate the discriminant for each function:<br /><br />a) \( f(x) = -3x^2 + x - 2 \)<br />\[ \Delta = 1^2 - 4(-3)(-2) = 1 - 24 = -23 \]<br /><br />b) \( f(x) = -x^2 + 4 \)<br />\[ \Delta = 0^2 - 4(-1)(4) = 0 + 16 = 16 \]<br /><br />c) \( f(x) = 2x^2 - 12x + 18 \)<br />\[ \Delta = (-12)^2 - 4(2)(18) = 144 - 144 = 0 \]<br /><br />d) \( f(x) = x^2 - 3x + 25 \)<br />\[ \Delta = (-3)^2 - 4(1)(25) = 9 - 100 = -91 \]<br /><br />e) \( f(x) = 10x^2 - 4x \)<br />\[ \Delta = (-4)^2 - 4(10)(0) = 16 - 0 = 16 \]<br /><br />f) \( f(x) = -x^2 + 10x - 14 \)<br />\[ \Delta = 10^2 - 4(-1)(-14) = 100 - 56 = 44 \]<br /><br />Now, let's determine which functions have at least one real root based on the discriminant values:<br /><br />- If \( \Delta > 0 \), the quadratic equation has two distinct real roots.<br />- If \( \Delta = 0 \), the quadratic equation has one real root (a repeated root).<br />- If \( \Delta < 0 \), the quadratic equation has no real roots.<br /><br />Based on the discriminant values, the functions that have at least one real root are:<br /><br />b) \( f(x) = -x^2 + 4 \)<br />c) \( f(x) = 2x^2 - 12x + 18 \)<br />e) \( f(x) = 10x^2 - 4x \)<br />f) \( f(x) = -x^2 + 10x - 14 \)<br /><br />Therefore, the correct answers are:<br />b) \( f(x) = -x^2 + 4 \)<br />c) \( f(x) = 2x^2 - 12x + 18 \)<br />e) \( f(x) = 10x^2 - 4x \)<br />f) \( f(x) = -x^2 + 10x - 14 \)
Clique para avaliar: