Pergunta

Example 3.28 Using the above definitions, show that cosh^2x-sinh^2x=1 sinh(x+y)=coshxsinhy+sinhxcoshy 3. sinh(x+y)=sinhxcoshy+coshxsinhy
Solução

4.4296 Voting

LucasMestre · Tutor por 5 anos
Responder
Let's correct and verify the given equations using the definitions of hyperbolic functions.
1. **Show that \cosh^2(x) - \sinh^2(x) = 1 :**
By definition:
\cosh(x) = \frac{e^x + e^{-x}}{2}
\sinh(x) = \frac{e^x - e^{-x}}{2}
Squaring these expressions, we get:
\cosh^2(x) = \left( \frac{e^x + e^{-x}}{2} \right)^2 = \frac{e^{2x} + 2 + e^{-2x}}{4}
\sinh^2(x) = \left( \frac{e^x - e^{-x}}{2} \right)^2 = \frac{e^{2x} - 2 + e^{-2x}}{4}
Now, subtracting \sinh^2(x) from \cosh^2(x):
\cosh^2(x) - \sinh^2(x) = \frac{e^{2x} + 2 + e^{-2x}}{4} - \frac{e^{2x} - 2 + e^{-2x}}{4} = \frac{4}{4} = 1
Therefore, \cosh^2(x) - \sinh^2(x) = 1 .
2. **Show that \sinh(x+y) = \cosh(x)\sinh(y) + \sinh(x)\cosh(y) :**
By definition:
\sinh(x+y) = \frac{e^{x+y} - e^{-(x+y)}}{2}
Using the exponential addition formula:
e^{x+y} = e^x e^y
e^{-(x+y)} = e^{-x} e^{-y}
Therefore:
\sinh(x+y) = \frac{e^x e^y - e^{-x} e^{-y}}{2} = \frac{e^x e^y - e^{-x} e^{-y}}{2} = \frac{e^x e^y - e^{-x} e^{-y}}{2}
Now, using the definitions of \cosh(x) and \sinh(y):
\cosh(x) = \frac{e^x + e^{-x}}{2}
\sinh(y) = \frac{e^y - e^{-y}}{2}
Similarly, for \sinh(x) and \cosh(y):
\sinh(x) = \frac{e^x - e^{-x}}{2}
\cosh(y) = \frac{e^y + e^{-y}}{2}
Now, combining these:
\cosh(x)\sinh(y) = \left( \frac{e^x + e^{-x}}{2} \right) \left( \frac{e^y - e^{-y}}{2} \right)
\sinh(x)\cosh(y) = \left( \frac{e^x - e^{-x}}{2} \right) \left( \frac{e^y + e^{-y}}{2} \right)
Adding these two results:
\cosh(x)\sinh(y) + \sinh(x)\cosh(y) = \frac{(e^x + e^{-x})(e^y - e^{-y}) + (e^x - e^{-x})(e^y + e^{-y})}{4}
Simplifying the numerator:
(e^x e^y - e^x e^{-y} + e^{-x} e^y - e^{-x} e^{-y}) + (e^x e^y + e^x e^{-y} - e^{-x} e^y - e^{-x} e^{-y})
= e^{x+y} - e^{-x-y} + e^{x-y} - e^{-x+y}
Combining like terms:
\[
= e^{x+y} - e^{-x-y}
1. **Show that \cosh^2(x) - \sinh^2(x) = 1 :**
By definition:
\cosh(x) = \frac{e^x + e^{-x}}{2}
\sinh(x) = \frac{e^x - e^{-x}}{2}
Squaring these expressions, we get:
\cosh^2(x) = \left( \frac{e^x + e^{-x}}{2} \right)^2 = \frac{e^{2x} + 2 + e^{-2x}}{4}
\sinh^2(x) = \left( \frac{e^x - e^{-x}}{2} \right)^2 = \frac{e^{2x} - 2 + e^{-2x}}{4}
Now, subtracting \sinh^2(x) from \cosh^2(x):
\cosh^2(x) - \sinh^2(x) = \frac{e^{2x} + 2 + e^{-2x}}{4} - \frac{e^{2x} - 2 + e^{-2x}}{4} = \frac{4}{4} = 1
Therefore, \cosh^2(x) - \sinh^2(x) = 1 .
2. **Show that \sinh(x+y) = \cosh(x)\sinh(y) + \sinh(x)\cosh(y) :**
By definition:
\sinh(x+y) = \frac{e^{x+y} - e^{-(x+y)}}{2}
Using the exponential addition formula:
e^{x+y} = e^x e^y
e^{-(x+y)} = e^{-x} e^{-y}
Therefore:
\sinh(x+y) = \frac{e^x e^y - e^{-x} e^{-y}}{2} = \frac{e^x e^y - e^{-x} e^{-y}}{2} = \frac{e^x e^y - e^{-x} e^{-y}}{2}
Now, using the definitions of \cosh(x) and \sinh(y):
\cosh(x) = \frac{e^x + e^{-x}}{2}
\sinh(y) = \frac{e^y - e^{-y}}{2}
Similarly, for \sinh(x) and \cosh(y):
\sinh(x) = \frac{e^x - e^{-x}}{2}
\cosh(y) = \frac{e^y + e^{-y}}{2}
Now, combining these:
\cosh(x)\sinh(y) = \left( \frac{e^x + e^{-x}}{2} \right) \left( \frac{e^y - e^{-y}}{2} \right)
\sinh(x)\cosh(y) = \left( \frac{e^x - e^{-x}}{2} \right) \left( \frac{e^y + e^{-y}}{2} \right)
Adding these two results:
\cosh(x)\sinh(y) + \sinh(x)\cosh(y) = \frac{(e^x + e^{-x})(e^y - e^{-y}) + (e^x - e^{-x})(e^y + e^{-y})}{4}
Simplifying the numerator:
(e^x e^y - e^x e^{-y} + e^{-x} e^y - e^{-x} e^{-y}) + (e^x e^y + e^x e^{-y} - e^{-x} e^y - e^{-x} e^{-y})
= e^{x+y} - e^{-x-y} + e^{x-y} - e^{-x+y}
Combining like terms:
\[
= e^{x+y} - e^{-x-y}
Clique para avaliar: