Primeira página
/
Matemática
/
Given that tan^2Theta =(3)/(8) , what is the value of secTheta ? pm sqrt ((8)/(3)) pm sqrt ((11)/(8)) (11)/(8) (8)/(3)

Pergunta

Given that
tan^2Theta =(3)/(8) , what is the value of secTheta  ?
pm sqrt ((8)/(3))
pm sqrt ((11)/(8))
(11)/(8)
(8)/(3)

Given that tan^2Theta =(3)/(8) , what is the value of secTheta ? pm sqrt ((8)/(3)) pm sqrt ((11)/(8)) (11)/(8) (8)/(3)

Solução

expert verifiedVerification of experts
4.0216 Voting
avatar
YasminElite · Tutor por 8 anos

Responder

To find the value of $sec\Theta$, we can use the trigonometric identity $sec^2\Theta = 1 + tan^2\Theta$. Given that $tan^2\Theta = \frac{3}{8}$, we can substitute this value into the identity to find $sec^2\Theta$.<br /><br />$sec^2\Theta = 1 + \frac{3}{8} = \frac{11}{8}$<br /><br />Taking the square root of both sides, we get:<br /><br />$sec\Theta = \pm \sqrt{\frac{11}{8}}$<br /><br />Therefore, the correct answer is $\pm \sqrt {\frac {11}{8}}$.
Clique para avaliar: